

The YubiKey Manual
Usage, configuration and introduction of basic concepts

Version: 3.4
Date: 27 March, 2015

The YubiKey Manual

Disclaimer
The contents of this document are subject to revision without notice due to continued
progress in methodology, design, and manufacturing. Yubico shall have no liability for
any error or damages of any kind resulting from the use of this document.

The Yubico Software referenced in this document is licensed to you under the terms
and conditions accompanying the software or as otherwise agreed between you or the
company that you are representing.

Trademarks
Yubico and YubiKey are trademarks of Yubico AB.

Contact Information
Yubico AB
Kungsgatan 37, 8 floor
111 56 Stockholm
Sweden
info@yubico.com

© Yubico, 2015 Page 2 of 40 Version: Yubikey Manual 3.4

mailto:info@yubico.com
mailto:info@yubico.com
mailto:info@yubico.com

The YubiKey Manual

Contents
1 Document Information

1.1 Purpose
1.2 Audience
1.3 Related documentation
1.4 Document History
1.5 Definitions

2 Introduction and basic concepts

2.1 Basic concepts and terms
2.2 Functional blocks
2.3 Security rationale
2.4 OATH-HOTP mode
2.5 Challenge-response mode
2.6 YubiKey NEO
2.7 YubiKey versions and parametric data
2.8 YubiKey Nano

3 Installing the YubiKey

3.1 Inserting the YubiKey for the first time (Windows XP)
3.2 Verifying the installation (Windows XP)
3.3 Installing the key under Mac OS X
3.4 Installing the YubiKey on other platforms
3.5 Understanding the LED indicator
3.6 Testing the installation
3.7 Installation troubleshooting

4 Using the YubiKey

4.1 Using multiple configurations (from version 2.0)
4.2 Updating a static password (from version 2.0)
4.3 Responding to a challenge (from version 2.2)

5 Configuring the YubiKey

5.1 The TKTFLAG_xx format flags
5.2 The reference string
5.3 The fixed string
5.4 Public identity / token identifier interoperability
5.5 The OTP string and the CFGFLAG_xx flags
5.6 The EXTFLAG_xx extended mode flags
5.7 Write protection
5.8 Automatic navigation

6 Implementation details

6.1 The Yubico OTP generation algorithm
6.2 Modified Hexadecimal (Modhex) encoding
6.3 CRC16 calculation and verification
6.4 Random number generator
6.5 USB programming interface

© Yubico, 2015 Page 3 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

7 The YubiKey NEO

7.1 Standard YubiKey compatibility
7.2 NDEF messages
7.3 Modes of operation
7.4 U2F mode of operation (version 3.3 and later)
7.5 CCID mode of operation
7.6 Auto eject enabled
7.7 Contact-less mode (NFC) of operation
7.8 Device status LED
7.9 Javacard execution environment

© Yubico, 2015 Page 4 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

1 Document Information
1.1 Purpose

The purpose of this documentation is to provide an detailed understanding
of the Yubico YubiKey concepts, operation and configuration.

The document does not cover a “systems perspective”, but rather focuses
on technical and usage aspects of the YubiKey device itself.

1.2 Audience
This document is intended primarily for readers with a technical/IT
background. The document assumes knowledge of basic security concepts
and terminology.

1.3 Related documentation
● YubiKey Configuration Utility – User’s guide
● YubiKey Configuration COM API – Describes the configuration API
● YubiKey Client COM API – Describes the client-side API
● YubiKey Server COM API – Describes the server-side API
● YubiKey low-level Interface description – Describes the HID API
● RFC 2104 – HMAC: Keyed-Hashing for Message Authentication
● RFC 4226 – HOTP: An HMAC-Based One-Time Password Algorithm
● OATH Token Identifier Specification from openauthentication.org
● Type 4 Tag Operation Specification (and related documents) from

nfc-forum.org
● Specification for Integrated Circuit(s) Cards Interface Devices from usb.org
● Yubico online forum – http://forum.yubico.com

1.4 Document History
Date Version Author Activity
2009-09-09 2.0 JE New release
2009-12-03 2.1 JE Added OATH-HOTP
2010-06-15 2.2 JE Updated for 2.2 features
2013-04-11 3.1 JE Updated for 2.4 and NEO features
2014-09-17 3.3 JE Updated for 3.3 firmware
2015-03-27 3.4 TM Updated logo and other images

1.5 Definitions
Term Definition
YubiKey device Yubico’s authentication device for connection to the USB

port
USB Universal Serial Bus
HID Human Interface Device. A specification of typical USB

devices used for human interaction, such as keyboards,
mice, joysticks etc.

AES Advanced Encryption Standard, FIPS-197
UID Unit IDentity, a.k.a. Secret Id
Ticket A general term for an access code generated by the

YubiKey, a.k.a. OTP.
Modhex Modified Hexadecimal coding
OTP One Time Password
OATH Initiative for open authentication (RFC 4226)

© Yubico, 2015 Page 5 of 40 Version: Yubikey Manual 3.4

http://forum.yubico.com/

The YubiKey Manual

HOTP Hashed One Time Password
HMAC-SHA1 Secure message hashing (RFC 2104)
EMC Electromagnetic Compatibility
FCC Federal Communications Commission
CE Conformité Européenne (European Conformity)
FIDO Fast IDentity Online
U2F Universal Second Factor, specified by FIDO alliance

© Yubico, 2015 Page 6 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

2 Introduction and basic concepts
The Yubico YubiKey is an authentication device capable of generating One
Time Passwords (OTPs). The YubiKey connects to a USB port and identifies
itself as a standard USB HID keyboard, which allows it to be used in most
computer environments using the system’s native drivers.

The YubiKey comprises an integrated touch-button that triggers the OTP
generation.

Generated OTPs are sent as emulated keystrokes via the keyboard input
path, thereby allowing the OTPs to be received by any text input field or
command prompt.

The YubiKey operation and output is configurable, but the basic OTP
generation scheme can be conceptually described as:

1. The YubiKey is inserted into the USB port. The computer detects it as an
external USB HID keyboard

2. The user touches the YubiKey OTP generation button
3. Internally, a byte string is formed by concatenation of various internally

stored and calculated fields, including as a non-volatile counter, a timer and
a random number.

4. The byte string is encrypted with a 128-bit AES key
5. The encrypted string is converted to a series of characters that are

outputted as keystrokes via the keyboard port

The generated string of keystrokes is then typically sent via an input dialog
or a web form to a server or host application for verification. The basic steps
for verification can be conceptually described as:

6. The received string is converted back to a byte string
7. The byte string is decrypted using the same (symmetric) 128-bit AES key
8. The string’s checksum is verified. If not valid, the OTP is rejected
9. Additional fields are verified. If not valid, the OTP is rejected
10. The non-volatile counter is compared with the previously received value. If

lower than or equal to the stored value, the received OTP is rejected as a
replay.

11. If greater than the stored value, the received value is stored and the OTP is
accepted as valid.

2.1 Basic concepts and terms
The basic function of the YubiKey is to generate One Time Passwords
(OTPs), where two base modes exist – Yubico OTP and OATH-HOTP mode.

© Yubico, 2015 Page 7 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

However, in order to support multiple modes of usage, several parameters
can be configured to match the requirements of a particular application.

2.1.1 YubiKey standard vs. YubiKey NEO disambiguation
With the introduction of the YubiKey NEO, additional concepts beyond the
capabilities of the original YubiKey have been introduced. In the following
text, the original YubiKey functionality is referenced as 'YubiKey
functionality', whereas the enhanced YubiKey NEO functionality is described
separately. See sections 2.6 and 0 for more information.

2.1.2 The OTP string and the public identity
The full Yubico OTP string comprises an optional public id string identifying
the particular device followed with the actual dynamic OTP part.

A sample output from a YubiKey may look like

fifjgjgkhchbirdrfdnlnghhfgrtnnlgedjlftrbdeut
fifjgjgkhchbgefdkbbditfjrlniggevfhenublfnrev
fifjgjgkhchblechfkfhiiuunbtnvgihdfiktncvlhck

Here, the YubiKey button has been pressed three times in a row. As seen,
the first part is static where the second changes each time. The fixed public
id is used to identify the particular device when the OTP string is received so
the right AES key can be retrieved to decrypt the dynamic OTP part. The
public id part is optional and can be up to 128 bits in length.

The default settings for YubiKeys programmed to use the Yubico
authentication server uses a 6 byte = 48 bits public id.

2.1.3 Modified Hexadecimal (Modhex) encoding
The character representation may look a bit strange at first sight but is
designed to cope with various keyboard layouts causing potential
ambiguities when decoded. USB keyboards send their keystrokes by the
means of “scan codes” rather than the actual character representation. The
translation to keystrokes is done by the computer. For the YubiKey, it is
critical that the same code is generated if it is inserted in a German
computer having a QWERTZ, a French with an AZERTY or an US one with a
QWERTY layout. The “Modhex”, or Modified Hexadecimal coding was
invented by Yubico to just use the specific characters that don’t create any
ambiguities. The Modhex coding packs four bits of information in each
keystroke. This gives that a 128-bit OTP string requires 128 / 4 = 32
characters.

A deeper description of the Modhex encoding scheme can be found in
section 6.2.

2.1.4 The Yubico OTP part
The OTP part comprises 128 bits AES-128 encrypted information encoded
into 32 Modhex characters. The following fields make up the OTP

● Private identity. This is a 6-byte “secret” field that is used as a part of the
OTP verification. When not used as a private id, it is typically set to all
zeroes.

© Yubico, 2015 Page 8 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

● Counter fields. Each time a new OTP is yielded, a counter is incremented by
one. The counter fields are made up of a non-volatile and a volatile part.
The first is incremented by one the first time after power up, the second
counter increments every time. This combination guarantees the OTPs to be
truly unique.

● Timer field. In order to add entropy and to add additional means for
Phishing protection, an 8 Hz timer field is inserted. Once the YubiKey is
inserted, this 24-bit field is loaded with a random number and then counts
up with approximately 8 Hz.

● Random number – a 16-bit random number is inserted for increased
entropy.

● A closing CRC16 checksum of all fields

A more detailed description of the OTP generation algorithm can be found in
section 6.1.

2.1.5 OATH-HOTP
In OATH-HOTP mode, the OTP is generated using the standard RFC 4226
HOTP algorithm. The public identity, if used, conforms to the
openauthentication.org Token Identifier Specification

2.1.6 Challenge-response mode
With introduction of the Challenge-Response mode in YubiKey 2.2, there is
support for programmatic interaction with the YubiKey. By using a
client-side interface API, an OTP request can be sent to the YubiKey where
the calculated OTP is read via an API call rather than by the means of
recording keystrokes. Furthermore, additional security can be provided by a
server emitted factor is inserted into the OTP generation algorithm.

The challenge-response mode is further described in section 2.5.

2.1.7 Static mode
Although it somewhat invalidates the idea with an OTP generation device,
the YubiKey further supports a “static mode”. As the name implies, the
static mode forces the OTP part to be static.

The rationale behind the static mode is to support a medium-security
scenario where compatibility with legacy systems is the key. Although static,
the yielded OTP comprises a password of a length and complexity that is
resistant to password guessing which is further impractical to write down or
tell to someone over the telephone.

The YubiKey 2 further comprises a function to allow the user to change its
static output without the need for client software. This allows seamless
integration into existing password structures without any need for
modification or server side software.

2.2 Functional blocks
The YubiKey comprises the following high-level functional blocks

2.2.1 USB interface
The YubiKey is designed to attach to a standard “Type A” port. The YubiKey
is a “low speed” USB device (1.5 MBit/s) which conforms to the USB 2.0
specification. The YubiKey emulates an USB HID keyboard and also works in
pre-boot settings.

© Yubico, 2015 Page 9 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

The YubiKey is powered from the USB port and powers down according to
the USB specification when the computer enters suspend mode. The
YubiKey does not have an internal battery or other backup power source.

The YubiKey is not certified to work with an A-A extension cable as such
cables are discouraged and not allowed by the USB specification. Although it
“typically works just fine”, electrical (CE/FCC) and/or USB limits may be
violated.

2.2.2 OTP generation engine
The heart of the YubiKey is the microcontroller with the OTP generation
algorithms implemented. The microcontroller firmware is stored in ROM and
cannot be upgraded.

2.2.3 Configuration interface
The YubiKey comprises a configuration interface which allows OTP
generation data and parameters to be set via the USB interface. Apart from
status information, the configuration interface is “write only”, i.e. once
written, sensitive information cannot be read out.

2.2.4 Non-volatile memory
The YubiKey comprises a non-volatile memory that keeps settings and
counter values when the device is unplugged. The memory data retention is
guaranteed to be 10 years minimum.

2.2.5 Touch button
The YubiKey has an integrated touch-button used to trigger generation of an
OTP. The touch button has no moving parts and operates by the means of
capacitive loading introduced by a finger touching it. This means that the
button cannot be pressed with an insulating device, such as a pen, a
bandaged finger or a hand with a glove on.

2.2.6 Indicator light
Surrounding the touch button is a green indicator light, signaling the current
state of the YubiKey. A steady green light means that the YubiKey is ready
to generate an OTP where a rapidly flashing light signals some form of error
condition.

2.3 Security rationale
A common question is how secure the YubiKey is compared to method X,
system Y or device Z. Fully answering this is somewhat beyond the scope of
this document as it further depends on the actual system implementation.
However, given a few assumptions, the following pillars are the fundament
of the YubiKey security when using Yubico OTP mode.

2.3.1 Intended usage
The YubiKey is designed as a device to be used in two-factor authentication.
This means that the user should use the YubiKey together with a second
factor, such as a secret password or a PIN. This prevents unauthorized
usage if the device is lost or stolen.

© Yubico, 2015 Page 10 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

2.3.2 Prevention of replay
The YubiKey OTP algorithm yields a 32 character dynamic string that by
design is guaranteed to be unique. The OTP contains linear counters that
allow the instance verifying it to determine in which particular order a set of
OTPs have been generated.

The security of the YubiKey assumes that the verifying party keeps track of
the last sequence number received from a particular device. If an OTP is
received where the sequence number is less than or equal to the last
number received, this should be rejected as a replay of an earlier generated
OTP.

2.3.3 OTP lifetime
A potential issue with OTPs not including a battery-backed real-time clock is
that the last OTP has an “unlimited lifetime”. A scenario involving “Phishing”,
i.e. where a rogue user asks the legitimate user for an OTP, which is later
used to access a protected service. Given a reasonably frequent usage by
the legitimate user, all previously stored OTPs will by their nature be
invalidated at each use. However, if this scenario is still of concern, the
system shall be designed to ask for more than one OTPs during a session.

The YubiKey comprises an 8 Hz timer which starts to count when the device
is powered via the USB port. This timer value is inserted in the OTP which
allows the verifying party to determine the time elapsed between two
subsequently received OTPs. An attacker would then have to predict the
actual time elapsed for a legitimate user and convince the victim to yield
OTPs in that order. This makes the attack much harder and less practical to
conduct.

2.3.4 Cryptographic strength
The sent OTP is the cipher text output from an AES 128-bit encryption
stage. Assuming the integrity of the AES-128 algorithm, a key space of 2128
bits gives about 3 × 1038 combinations. Given that there is no known
cryptanalysis vector for the AES algorithm, the only possible attack involves
an exhaustive search.

Just as an illustration, trying 3 × 1038 combinations would take 1000
computers working in parallel, each testing 10 billion keys each second
some 1018 years. Even given the predictable growth in computing power, an
exhaustive search is simply not practical over a foreseeable future.

2.3.5 Protection of the key and configuration data
Given the symmetric nature of the AES encryption algorithm, the security of
the YubiKey relies that the AES key is logically and physically protected both
in the key and in the server that verifies the OTP.

The configuration data is updated via a configuration API, accessible via the
USB interface. To prevent unauthorized update, the configuration can be
protected by a 48-bit access code. If used, an exhaustive search of all
combinations would typically take some 100,000 years to perform.
Furthermore, the YubiKey configuration data is write-only, i.e. configuration
data and the key can only be written but not be read. This means that
unauthorized update of the configuration is an act of sabotage rather than a
security threat.

© Yubico, 2015 Page 11 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

The configuration data is stored in a non-volatile storage integral to the
microcontroller. A potential attack is to physically probe the silicon or
analyze the hardware behavior to potentially gain full or partial knowledge
of the stored secrets. However, such an attack would require a complete
break-up of the YubiKey, involving dissolving the microcontroller chip
encapsulation. Furthermore, very advanced equipment is needed to probe
the chip internals. Given the effort and costs involved for such an attack,
this is not considered a threat given that just a single device will be broken.

It has been proven that certain forms of side-channel attacks can be
performed against the standard YubiKey, potentially leaking information that
allows for a partial or full key recovery. Additional hardware- and software
countermeasures have been added to address such concerns.

With the introduction of the YubiKey NEO, a far stronger protection against
various forms of invasive and non-invasive attacks is achieved.

2.4 OATH-HOTP mode
From firmware version 2.1, the YubiKey supports the OATH-HOTP standard
as outlined by RFC 4226. OTP generation is event based where the moving
factor is stored in non-volatile memory of the YubiKey. The HOTP output can
be truncated to 6 or 8 digits.

In OATH mode, the YubiKey further supports the OpenAuthentication.org
Token Identifier Specification, where each token can be uniquely identified
in an OATH ecosystem. The Token Identifier can be configured to be
automatically outputted together with the HOTP.

From firmware version 2.2, the OATH-HOTP mode supports configuration of
a preset moving factor value. A configuration tool can then assign a random
“seed” to avoid having a predictable moving factor at the time of
deployment.

The OATH mode is set per configuration which allows one YubiKey to
generate both YubiKey OTPs and OATH HOTPs in the same physical device.

2.5 Challenge-response mode
For settings where automatic interaction with a client-side application is
required or a server factor in the OTP generation is desired,
challenge-response mode has been added from firmware release 2.2. The
challenge allows cryptographic processing of a server generated challenge to
create a response that can be verified by the server. The challenge-response
mode is of course not limited to a strict client-server like setting and can be
used for applications like a software protection “dongle”, workstation lock
etc.

Two basic modes of operations are available:

● Yubico OTP mode
The Yubico OTP mode takes a 6 byte challenge and creates a
response using the Yubico OTP algorithm, where variable fields
generated by the device creates different responses even if the
challenge is the same.

● HMAC-SHA1 mode
The HMAC-SHA1 mode creates a HMAC on a 0-64 byte (0-512 bits)
data block using a 20 byte (160 bits) fixed secret. As there is no
fields generated by the device, the response is identical if a second
identical challenge is issued.

© Yubico, 2015 Page 12 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

Optionally, the challenge-response mode can be configured to require user
interaction by the means of the user actively pressing the YubiKey button in
order for the response to be sent.

Challenge-response mode cannot be used with normal one-way OTP or
static modes. When configured in challenge-response mode, only API access
is available.

2.6 YubiKey NEO
The YubiKey NEO features additional capabilities beyond the YubiKey
standard feature set.

The additional features are:

● Fully compatible with the YubiKey standard
● Common Criteria EAL5+ secure element storing cryptographic data

and performing secure operations
● Asymmetric cryptographic capabilities
● Near Field Communication (NFC) interface allowing contact-less data

exchange in NFC- and RFID environments
● JavaCard execution environment
● USB CCID compliant Smartcard interface
● Full-speed USB interface

See section 0 for more information regarding the YubiKey NEO

© Yubico, 2015 Page 13 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

2.7 YubiKey versions and parametric data
The YubiKey has like any product undergone a process of evolution over the
years. Apart from various firmware revisions, two major versions have been
released to date. The YubiKey 2 is backwards compatible with version 1,
both functional and from a configuration point of view.

Firmware updates are designed to be backwards compatible. It is an explicit
policy to only maintain one firmware version for each YubiKey version.

The firmware is stored in ROM and cannot be upgraded. Firmware upgrades
implies replacement of existing keys.

 YubiKey 1 YubiKey 2 YubiKey NEO

Introduced 2008 2009 2012
Availability Discontinued Yes Yes
Weight 1.8 g (0.06 oz) 3.3 g (0.12 oz) 3 g (0.1 oz)
Dimensions 45 x 18 x 2.3 mm

(1.8 x 0.7 x 0.1")
45 x 18 x 3 mm
(1.8 x 0.7 x 0.12")

45 x 18 x 3 mm
(1.8 x 0.7 x 0.12")

Color Black only Black and White
standard.

Black standard.
Other colors on
custom order

USB 2.0 Low-speed 2.0 Low-speed 2.0 Full-speed
Configurations 1 2 2
Static password
mode

Basic from
firmware revision
1.3

Enhanced Enhanced

Static password
update by user

No Yes No

OATH-HOTP No From firmware
revision 2.1

Yes

Challenge-resp
onse mode

No From firmware
revision 2.2

Yes

Secure element No No Yes
Javacard
execution
environment

No No Yes

USB CCID No No Yes
NFC / ISO
14443A

No No Yes

Construction Two piece + resin Mono-block mold,
hermetical

Mono-block mold,
hermetical

Protection class
(non-certified)

IP 51 IP 67 IP 67

Max bending
force

5 N 25 N 25 N

EMC CE 89/336/EEC
FCC 47 CFR Part
15

CE 89/336/EEC
FCC 47 CFR Part 15

CE 89/336/EEC
FCC 47 CFR Part 15

© Yubico, 2015 Page 14 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

2.8 YubiKey Nano
The YubiKey is also available in a very compact form-factor, allowing a flush
installation into a USB type A receptacle. The functionality is fully compatible
with the standard YubiKey.

 Full-sized Nano-sized

Weight 3 g (0.1 oz) 1.8 g (0.06 oz)
Dimensions 45 x 18 x 3 mm

(1.8 x 0.7 x 0.12")
13 x 12 x 2.4 mm
(0.51 x 0.48 x 0.09")

© Yubico, 2015 Page 15 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

3 Installing the YubiKey
The YubiKey can be used on computer environments supporting USB HID
keyboards. Although any system can be used, the following description
shows it on a XP and MacOS X systems. Although there are small differences
between the Windows flavors, the same concept is used from Windows 98
SE and onwards.

3.1 Inserting the YubiKey for the first time (Windows
XP)
The touch button and gold contacts shall be facing up when inserting the
key.

When inserted, the operating system (in this case Windows XP) recognizes
the new device. The installation progress appears as a pop-up balloon in the
Windows tray

The device is recognized as a Human Interface Device (HID), and the
operating system installs the built-in drivers for it

When the driver installation is complete, the device is ready to use

3.2 Verifying the installation (Windows XP)
The device is ready to use and end-users only needs to be assured that the
“Your new hardware is installed and ready to use” confirmation appears. If
needed, the installation can be verified.

© Yubico, 2015 Page 16 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

When the device is installed, it appears under the list of HID devices in the
Windows device manager.

Double-clicking the selected entry brings up the properties for it

The device firmware version can be verified by selecting “Firmware version”
under the “Details” tab

© Yubico, 2015 Page 17 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

In this case, the firmware version is 1.9.4.

3.3 Installing the key under Mac OS X
When running Apple Mac OS X, inserting a non-Apple keyboard, like the
YubiKey will bring up the following dialog

Simply discard the screen by pressing the close button. The YubiKey now
installs as a default ANSI keyboard.

Verifying the installation can be done by bringing up the “About this Mac”
dialog. Choose “More info…” and click “USB”. The attached USB devices now
appear. Click on the “Yubico YubiKey” and the properties appear

The Vendor ID 0x1050 and Product ID 0x0010 uniquely identify the
YubiKey. The parameter “Bus Power (mA): 500” does not specify the power
consumption of the YubiKey (which is max 30 mA) but rather what this
specific port can supply.

3.4 Installing the YubiKey on other platforms
The YubiKey is used on a wide variety of platforms and similar
straight-forward principles of identifying the USB HID device and pairing it
with the appropriate standard keyboard drivers typically apply. If any

© Yubico, 2015 Page 18 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

operating system specific questions arise, please check out on the Yubico
developer’s forum on-line or ask for support from Yubico.

3.5 Understanding the LED indicator
The LED indicator shows the status of the YubiKey. For YubiKey NEO, please
refer to section 7.8

3.5.1 Error or no power – constant off
If the ring does not light up at all, the device does not work properly. Ensure
that the device is inserted with the ring facing up and it is properly seated in
the USB contact. If connected to a hub, ensure that the hub has power if
needed.

3.5.2 Power down – occasional blips (YubiKey 1 only)
If the host computer enters power-down mode (hibernation or suspend) and
stops polling the USB interface, the YubiKey also enters power-down mode.
A short green “blip” is then yielded approximately every 8 seconds.

3.5.3 Device enumeration or error condition – rapid flashing
During USB device enumeration process, the LED flashes rapidly with a rate
of approximately 4 Hz. The quick flashing also occurs when an invalid
operation is triggered, such as trying to trigger an un-configured OTP
configuration.

3.5.4 Non-configured – flash(-es) every 2 seconds
If the YubiKey does not have a valid configuration written to it, one or two
short flashes are yielded approximately every 2 seconds. Without a valid
configuration the device won’t emit OTPs. Trying to emit a code in this mode
will cause a short burst of flashes to indicate that the code cannot be
generated.

3.5.5 Ready – Constant on
When a valid configuration is present and the device is ready to emit an
OTP, the indicator shows a steady green light.

3.5.6 Ready to update or challenge trigger – slow flashing
(YubiKey 2/2.2 only)

When the device is ready to update a parameter the indicator flashes slowly
(approx 2 Hz). Pressing the key again commits the update. Waiting for 8
seconds automatically terminates the update operation.

The same flashing apply when the YubiKey is configured to require an user
confirmation when receiving a challenge request. The user must then
respond to the challenge by touching the YubiKey button within 15 seconds

© Yubico, 2015 Page 19 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

or the request will be terminated. The challenge-response feature is
available from YubiKey version 2.2.

3.6 Testing the installation
The quickest way to test the YubiKey that it works correctly is to open up a
text editor, word processor or command prompt. Simply touch the button
and an OTP string shall appear like

fifjgjgkhchbbvdjvfblveechbhdklchbjhcvluvlcfk

If the YubiKey is configured to work with Yubico’s validation server, there is
a test page where the actual output can be tested.

3.7 Installation troubleshooting
The fundamental principle of the YubiKey is that the installation is quick,
automatic and painless. If however something fails during the installation,
please verify the following.

3.7.1 The key is inserted and the indicator light does not light up
This probably means that the YubiKey does not have power

● Verify that the YubiKey is properly seated in the USB port
● Verify that the YubiKey is not inserted upside-down.
● If attached to an external hub, check that the hub has power
● Verify that another USB device works in the same port

3.7.2 The key is inserted, the indicator light flashes shortly and then
goes out after a few seconds

This probably means that the YubiKey has entered power down. This is the
normal behavior to conserve power when the computer enters
suspend/hibernation.

● Verify that the YubiKey is properly seated in the USB port
● Verify that another USB device works in the same port

3.7.3 The key is inserted and the indicator just flashes rapidly
This means that the YubiKey has not yet been recognized by the computer
and its operating system.

● Verify that the YubiKey is properly seated in the USB port
● Verify that another USB device works in the same port.
● Verify that there is no computer policy/setting that prevents attachment of

external devices.

3.7.4 The key is inserted and the indicator flashes every 2 seconds
This means that the YubiKey has not been properly configured and is
therefore unable to create an OTP. Check with the YubiKey issuer for a
replacement.

3.7.5 Nothing happens when the trigger button is pressed
● There must be at least one valid configuration present. Ensure the green

light is shining steadily.

© Yubico, 2015 Page 20 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

● Hold the button steady for about 0.5 seconds and the OTP is triggered.
● Touch with a naked finger and not a pen, pointer, eraser etc. Gloves and

bandage won’t work.
● For YubiKey 2, if there are multiple configurations touch the button shortly

and release.
● Check if the YubiKey works on another computer

3.7.6 It appears like the light goes out when trigger button is
pressed but nothing appears on the screen
● Verify that the cursor is placed in a valid input field
● Verify that the YubiKey is properly seated in the USB port

If the above does not resolve the issue, check out the Yubico forum on-line
or send a problem description to support@yubico.com

© Yubico, 2015 Page 21 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

4 Using the YubiKey
From a user perspective, there are just a few things to learn and understand
in order to use the YubiKey. First, insert the YubiKey in the USB port with
the button and gold contact facing up. When a steady green light is on, the
YubiKey is ready to emit an OTP via the keyboard interface.

If the green light does not go on steadily, check the troubleshooting guide in
section 3.7.

Under the gold button is a solid-state capacitive touch sensor that reacts on
touch by a finger. There are no moving parts and unlike traditional
mechanical or membrane touch buttons, no explicit force is necessary.

Ensure that the cursor is placed in a valid input field and touch the button
with a fingertip and hold steady for approximately 0.5 seconds and the OTP
string is emitted. The indicator will then be turned off for approximately 2
seconds where the touch button is disabled to prevent multiple triggers.

The sensor is designed not to react just when slightly touched or when a
finger is swiped over it. The delay and an algorithm are used to prevent
accidental triggering.

Touching with a pen or similar won’t work. Furthermore, wearing gloves or
having tape or bandage on the finger won’t trigger the sensor.

4.1 Using multiple configurations (from version 2.0)
YubiKey 2 supports an optional second configuration. This allows the
YubiKey to be used for multiple services where both configurations are
completely separated from each other. A typical usage is that one
configuration is used for a remote service and one for a local service in
static mode.

If both configurations are set, the trigger behavior is slightly different as the
user must select which OTP configuration that is desired:

● Short press 0.3 – 1.5 seconds) and release – OTP from configuration #1 is
yielded

● Long press (2.5 – 5 seconds) and release – OTP from configuration #2 is
yielded

4.2 Updating a static password (from version 2.0)
YubiKey 2 supports user-initiated update of a static password. If configured,
the user presses and holds the key for 8-15 seconds. When the button is

© Yubico, 2015 Page 22 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

released, the indicator light flashes. By pressing shortly, the change is
confirmed and the new OTP is yielded.

4.3 Responding to a challenge (from version 2.2)
YubiKey 2.2 supports challenge-response, where an OTP trigger can be
issued by a client-side application. If user interaction (permission) is
required, the green light flashes slowly. Shortly press the YubiKey button
and the response is generated. If the request is not acknowledged within 15
seconds, the challenge request is terminated with an error.

© Yubico, 2015 Page 23 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

5 Configuring the YubiKey
The YubiKey behavior and output can be configured to precisely fit the
desired mode of operation. Configuration data is written via the
configuration interface, accessible via the USB port. The configuration data
is stored in the non-volatile memory where it is kept even when the YubiKey
is unplugged.

Configuring the YubiKey is typically made via the configuration API where a
high-level interface is provided. The following sections describe the settings
in general terms rather than from an application-, binary-level or API-level
point of view.

The generalized format of the OTP output string looks like

ref_string <TAB> fixed_string <TAB> OTP_string <TAB>
<CR>

5.1 The TKTFLAG_xx format flags
The output format is controlled by the TKTFLAG_xx settings. These are
binary flags that can be turned either on or off. As the YubiKey functionality
has been extended, the usage of flags have become interleaved to allow full
backwards completely.

5.1.1 TKTFLAG_TAB_FIRST
When set, an initial TAB is sent before the fixed string

5.1.2 TKTFLAG_APPEND_TAB1
When set, a TAB is sent after the fixed string

5.1.3 TKTFLAG_APPEND_TAB2
When set, a TAB is sent after the OTP string

5.1.4 TKTFLAG_APPEND_DELAY1
When set, a 0.5 second delay is inserted after the fixed string

5.1.5 TKTFLAG_APPEND_DELAY2
When set, a 0.5 second delay is inserted after the OTP string

5.1.6 TKTFLAG_APPEND_CR
When set, an ENTER / Carriage Return character is sent last

5.1.7 TKTFLAG_PROTECT_CFG2 (from version 2.0 only)
This flag is not a format flag but is included here for backwards
compatibility. See section 5.5.11 for a description of this flag.

5.1.8 TKTFLAG_OATH_HOTP (from version 2.1 only)
This flag is not a format flag but is included here for backwards
compatibility. When set, the configuration is set to OATH-HOTP mode

© Yubico, 2015 Page 24 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

5.1.9 TKTFLAG_CHAL_RESP (from version 2.2 only)
This flag is not a format flag but is included here for backwards
compatibility. When set together with any of the CFGFLAG_CHAL_YUBICO
(5.5.15) or CFGFLAG_CHAL_HMAC (5.5.16) flags, the configuration is set
to Yubico OTP challenge-response mode.

5.2 The reference string
When set, a reference string of the Modhex characters 0..15 are outputted
first. This can be used by the verifying application to verify the mapping of
the Modhex characters.

5.3 The fixed string
The fixed string is used to identify a particular YubiKey device. The length of
the fixed string can be set between 0 and 16 bytes. There is no internal logic
for the fixed string and it is completely independent of the OTP part, i.e. no
information from the fixed string is used in the OTP algorithm.

The fixed string is referred to as the “Token Identifier” in OATH-HOTP mode
(see section 5.3.4)

5.3.1 Normal Modhex mode
The normal case is that the fixed string specifies a 1-16 byte (8 – 128 bits)
binary string. The output is encoded in Modhex format, yielding 2 to 32
characters output as each Modhex character represents 4 bits of information

For example, a fixed string of 6 bytes in this mode with the following data:

0x84 0x05 0x06 0x1e 0x1f 0x20

This input in this mode yields the fixed string jfcgchbubvdc

More on Modhex encoding can be found in section 6.1

5.3.2 No fixed string
The fixed string is optional and may not need to be used in certain use
cases.

● All YubiKeys in a collection share the same AES key. Each individual YubiKey
then uses the private (secret) identity field to identify the individual device.

● The YubiKey is used in static mode and 32 or 16 characters is enough for
the desired password strength.

5.3.3 Extended scan code mode (from version 2.0 only)
The YubiKey 2 also supports output by keyboard scan codes rather than
default Modhex coding. When configured, each byte in the fixed string is
treated as a keyboard scan code rather than a binary byte. Using this mode
rise the potential caveat that it may give undesirable output depending on
the keyboard national setting. For example, keyboard scan code 0x1c will
result in the character Y on a computer configured for a North-American
keyboard whereas it will result in the character Z on a computer configured
for a German keyboard.

© Yubico, 2015 Page 25 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

The specified string is treated as a collection of scan codes. Setting the most
significant bit (0x80) in a byte specifies that it shall be preceded with a
SHIFT.

For example, a fixed string of 6 bytes in this mode with the following data:

0x84 0x05 0x06 0x1e 0x1f 0x20

This input yields the fixed string Abc123 on a computer set for a
North-American keyboard.

There are several on-line resources available how scan codes map to specific
characters. One can be found at

http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-
923143f3456c/scancode.doc

This mode is enabled by a combination of the flags
CFGFLAG_SHORT_TICKET being set and the
CFGFLAG_STATIC_TICKET being cleared. When this combination is set,
the OTP part is not sent. This allows full backwards-compatibility with
YubiKey 1 which does not support this feature.

YubiKey 2.1 supports 1-16 characters scan code strings whereas YubiKey
2.2 supports up to 38 characters

5.3.4 OATH-HOTP Token Identifier (from version 2.1 only)
The YubiKey supports the Class A Token Identifier Specification as outlined
by openauthentication.org.

The general format of the 12 character Token Identifier is as follows:

OO OMP OATH Manufacturer Prefix. A two character prefix
identifying the manufacturer. Yubico has applied for
manufacturer prefix ‘ub’ to allow Modhex
compatibility

TT TT Token Type. A two character token type identifier.

UUUUUUUU MUI Manufacturer Unique Identifier. An 8 character string
that uniquely identifies the token.

The Token Identifier can be configured to be all numeric, OMP Modhex, OMP
+ TT Modhex or all Modhex.

5.4 Public identity / token identifier interoperability
As the public identity and token identifiers may be configured freely, there is
a certain risk that tokens configured by different users independently may
clash with the same identity. Although the secret cryptographic parts most
certainly would never clash, interoperability issues may arise in an
infrastructure where the authenticator or identity provider of a specific token
is to be found.

In order to allow several different customers to assign their own private
“namespaces”, the concept of a customer prefix for the fixed string has been
introduced. The customer prefix is a unique 16-bit number that is assigned
by Yubico. The customer prefix database will be accessible as a global
repository that can link a specific prefix to a specific authentication site.

© Yubico, 2015 Page 26 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

5.4.1 Interoperability guidelines in Yubico OTP mode
The public identity may be 0 to 16 bytes in length but the following
guidelines are to be followed in Yubico OTP mode in order to ensure
interoperability

● IDs below 6 bytes in length are considered to be used in a private
context and will therefore not be considered interoperable.

● IDs above 6 bytes in length are reserved for future extensions and
should not be used

● IDs with 6 bytes in length with the first byte not being 0x28 are
assigned by Yubico and shall not be used.

● IDs with 6 bytes in length are considered interoperable if the first
byte is 0x28

● A 16-bit unique prefix stored in byte 1 (high) and byte 2 (low)
identifies a particular user.

● Customer prefixes 0x0000 – 0x0009 are available freely for testing
purposes and are not considered interoperable

● Bytes 3-5 identify the individual key according to the user’s context.
The three bytes form a 24 bit range which equals to 224 or
approximately 16.8 million combinations.

5.4.2 Interoperability guidelines in OATH-HOTP mode
The interoperability guidelines for OATH-HOTP mode is less strict defined by
Yubico as users may apply for their own manufacturer at
openauthentication.org. Yubico however provides a method to use the
Yubico assigned OMP ‘ub’ with a Yubico assigned customer prefix.

● OMP must be set to ‘ub’

● The YubiKey must be configured with the
CFGFLAG_OATH_FIXED_MODHEX2 flag set.

● TT must be set to 190 + customer_prefix / 1000 (Modhex encoded)

● First MUI digit is (customer_prefix MOD 1000) / 100

● Second MUI digit is (customer_prefix MOD 100) / 10

● Third MUI digit is customer_prefix MOD 10

● The remaining 5 MUI digits are the device identity according to the
user’s context. The 5 digits form a range with 100,000 unique
combinations.

5.5 The OTP string and the CFGFLAG_xx flags

5.5.1 The CFGFLAG_xx configuration flags
Functional parameters are controlled by the CFGFLAG_xx settings. These
are binary flags that can be turned either on or off.

5.5.2 CFGFLAG_SEND_REF
When set, a reference string of the modhex characters 0..15 are outputted
first. This can be used by the verifying application to verify the mapping of
the Modhex characters.

© Yubico, 2015 Page 27 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

For YubiKey 2, this flag in combination with the flag
CFGFLAG_STRONG_PW2 replaces this string by the shifted character 1,
typically mapped to a ‘!’. This can be used to meet strong password
requirements where at least one character is required to be a “special
chacter”.

5.5.3 CFGFLAG_PACING_10MS
When set, an intra-character pacing time of 10 ms is added between each
sent keystroke.

5.5.4 CFGFLAG_PACING_20MS
When set, an intra-character pacing time of 20 ms is added between each
sent keystroke. Combined with the CFGFLAG_PACING_10MS flag, the
total delay is 30 ms.

5.5.5 CFGFLAG_STATIC_TICKET
Setting this bit causes the OTP generation to be forced into static mode, i.e.
the term OTP becomes somewhat misleading.

In static mode, the OTP generation algorithm is the same, but all dynamic
fields are set to fixed values

The static mode is implemented to allow integration with legacy systems
without the need for additional server-side software. See section 2.1.3 for
more information about the static mode.

5.5.6 CFGFLAG_TICKET_FIRST (YubiKey 1 only)
YubiKey 1 supports swapping the order of the fixed string and the OTP
string. When set, the OTP part is sent first and fixed part last.

Usage of this function is discouraged as it is not implemented in YubiKey 2.

5.5.7 CFGFLAG_ALLOW_HIDTRIG (YubiKey 1 only)
YubiKey 1 supports trigger from an external keyboard as well as by the
trigger button. The function only works properly in Windows systems and
reacts when the caps-lock, num-lock and scroll-lock update messages are
sent out to all keyboards in the system. Quickly “double-tapping” on any of
these keys on one attached keyboard will trigger an OTP on the YubiKey if
this bit is set.

The function is not portable and usage of this function is discouraged as it is
not implemented in YubiKey 2.

5.5.8 CFGFLAG_SHORT_TICKET (from version 2.0)
Setting this flag truncates the OTP part to 16 characters. This function is
only meaningful in static mode as a truncated non-static OTP cannot be
successfully decoded.

In order to maintain YubiKey 1 compatibility, the non-applicable combination
of this flag being set in non-static mode enables the “Extended scan code
mode” described in section 5.3.3.

5.5.9 CFGFLAG_STRONG_PW1 (from version 2.0)
Setting this flag enables generation of mixed-case characters required by
password policy settings in some legacy systems.

© Yubico, 2015 Page 28 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

Although a 128-bit password can be considered strong enough, if there is a
specific requirement for a mix between uppercase- and lowercase
characters, even a long OTP will fail.

Setting this flag causes the first two characters to be shifted. This means
that an OTP string like

grjndvjfluejrjtlijukvgrrdhljjjgi

will be changed to

GRjndvjfluejrjtlijukvgrrdhljjjgi

5.5.10 CFGFLAG_STRONG_PW2 (from version 2.0)
Setting this flag enables generation of mixed character and digits required
by password policy settings in some legacy systems.

Although a 128-bit password can be considered strong enough, if there is a
specific requirement for a mix between characters and digits, even a long
OTP will fail.

Setting this flag causes the first two digits in the range 0..7 to be shifted to
numbers 1..8. This means that an OTP string like

grjndvjfluejrjtlijukvgrrdhljjjgi

will be changed to

6rjn3vjfluejrjtlijukvgrrdhljjjgi

If this flag is set together with the flag CFGFLAG_STRONG_PW1, the output
will be

6RJn3vjfluejrjtlijukvgrrdhljjjgi

If this flag is set together with the flag CFGFLAG_SEND_REF, the reference
string will be replaced with a shifted 1. The output will then be

!6rjn3vjfluejrjtlijukvgrrdhljjjgi

5.5.11 CFGFLAG_MAN_UPDATE (from version 2.0)
In order to support legacy password systems, the YubiKey 2 supports
user-triggered static password change. The function is designed for the
specific use case of a traditional login system with a stricter password policy
where the user is asked to change their password on a regular basis.

The intended use case is like the following:

1. The user is asked to update their password.
12. The user enters their secret password. The user presses the YubiKey button

and the current fixed password is yielded
13. The user is asked to enter the new password.
14. The user enters their secret password. The user presses and holds the

YubiKey button for 10 seconds.
15. When released, a short tap updates the internal password with a new

randomized one. The new OTP is sent.
© Yubico, 2015 Page 29 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

16. The user is asked to confirm the new password.
17. The user enters their secret password. The user presses the YubiKey button

again and the new password is sent.
18. The user completes the password change.

As the change function has no protection against unauthorized usage, there
is a danger that an unauthorized person can sabotage a user’s YubiKey by
triggering this function.

5.5.12 TKTFLAG_PROTECT_CFG2 (from version 2.0)
As the name implies, this is actually a ticket format flag, but for
compatibility reasons, this configuration parameter is stored in this fields.

The “protect configuration 2” bit is used to lock and/or protect the second
configuration in a YubiKey. If the issuer of the key wants to prevent the user
from assigning something to configuration 2, setting this flag will reject all
attempts to write configuration 2.

However, given a scenario with a shared ownership of the YubiKey, the
issuer of configuration #2 can protect the issuer of configuration #1 to block
it. As long as the configuration #1 does not have this bit set, the
configuration #2 can be updated. If the configuration #2 is successfully
written with this bit set, writing a configuration with this bit set to
configuration #1 has no effect.

5.5.13 CFGFLAG_OATH_HOTP8 (from version 2.1)
Together with the TKTFLAG_OATH_HOTP flag, this flag selects the length of
the HOTP output. When set, the HOTP output is truncated to 8 digits,
otherwise the HOTP output is truncated to 6 digits.

5.5.14 CFGFLAG_OATH_FIXED_MODHEXx (from version 2.1)
These flags control the format of the Token Identifier string. It can either be
all numeric, the OMP Modhex, the OMP + TT Modhex or all Modhex.

CFGFLAG_OATH_FIXED_MODHEX1 First byte is Modhex
CFGFLAG_OATH_FIXED_MODHEX2 First two bytes are Modhex
CFGFLAG_OATH_FIXED_MODHEX All bytes are Modhex

5.5.15 CFGFLAG_CHAL_YUBICO (from version 2.2)
This flag set together with TKTFLAG_CHAL_RESP (5.1.9) enables Yubico
OTP challenge-response mode. When set, the configuration does not work in
normal OTP mode

5.5.16 CFGFLAG_CHALRESP_HMAC (from version 2.2)
This flag set together with TKTFLAG_CHAL_RESP (5.1.9) enables
HMAC-SHA1 challenge-response mode. When set, the configuration does not
work in normal OTP mode

5.5.17 CFGFLAG_CHALRESP_BTN_TRIG (from version 2.2)
This flag is not a format flag but is included here for backwards
compatibility. When set together with the TKTFLAG_CHAL_RESP flag, the
challenge-response configuration requires user acceptance by touching the
YubiKey button.

© Yubico, 2015 Page 30 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

5.6 The EXTFLAG_xx extended mode flags
Additional extended properties are controlled by the EXTFLAG_xx settings.
These are binary flags that can be turned either on or off.

Extended flags that are device specific rather than configuration specific
(SERIAL_BTN_VISIBLE, SERIAL_USB_VISIBLE, SERIAL_API_VISIBLE) are
merged, i.e. if a flag is set in any of the configuration, the device consider
the flag to be set.

5.6.1 EXTFLAG_SERIAL_BTN_VISIBLE (from version 2.2)
This flag allows the serial number to be retrieved by holding the touch
button while inserting the device into the USB port. Once the LED starts to
flash, release the button and the serial number will then be sent as a string
of digits.

5.6.2 EXTFLAG_SERIAL_USB_VISIBLE (from version 2.2)
This flag makes the serial number to appear in the USB descriptor's
iSerialNumber field. Note that this makes each device unique from the host
computer's view.

5.6.3 EXTFLAG_SERIAL_API_VISIBLE (from version 2.2)
This flag allows the serial number to be read via proprietary API calls

5.6.4 EXTFLAG_USE_NUMERIC_KEYPAD (from version 2.3)
In OATH-HOTP mode, numeric digits are sent rather than Modhex
characters. This may cause problems with certain keyboard layouts. Setting
the USE_NUMERIC_KEYPAD flag causes numeric character to be sent as
keystrokes from the numeric keypad rather than the normal numeric keys
on a 84-key keyboard.

5.6.5 EXTFLAG_FAST_TRIG (from version 2.3)
Setting this flag causes the trigger action to become faster. It only applies
when one configuration is written. If both configurations are set, the flag
has no effect.

5.6.6 EXTFLAG_ALLOW_UPDATE (from version 2.3)
Normally, a configuration has to be entirely re-written if anything is to be
changed. The ALLOW_UPDATE flag allows certain non-security related flags
to be modified after the configuration has been written. These flags are:

TKTFLAG_TAB_FIRST
TKTFLAG_APPEND_TAB1
TKTFLAG_APPEND_TAB2
TKTFLAG_APPEND_DELAY1
TKTFLAG_APPEND_DELAY2
TKTFLAG_APPEND_CR
CFGFLAG_PACING_10MS
CFGFLAG_PACING_20MS
EXTFLAG_SERIAL_BTN_VISIBLE
EXTFLAG_SERIAL_USB_VISIBLE
EXTFLAG_SERIAL_API_VISIBLE
EXTFLAG_USE_NUMERIC_KEYPAD
EXTFLAG_FAST_TRIG
EXTFLAG_ALLOW_UPDATE

© Yubico, 2015 Page 31 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

EXTFLAG_DORMANT
EXTFLAG_LED_INV

It is important to keep the EXTFLAG_DORMANT flag set when updating the
configuration if the desire is to keep it on. Once cleared, the flag cannot be
set without a complete re-write of the configuration.

The flag can be combined with a write protection (see section 5.7)

5.6.7 EXTFLAG_DORMANT (from version 2.3)
This flags allow a configuration to be stored without being accessible. This is
useful in deployments where a post-issuance activation of a configuration is
desired. This option can be used together with write protection (see section
5.7), requiring users who want to activate a configuration to supply a valid
configuration password.

5.6.8 EXTFLAG_LED_INV (from version 2.4)
This flag inverts the configured state of the LED. The default state is that the
LED is constantly on when the device is configured. Setting this flag causes
the LED to be off.

5.7 Write protection
In order to protect a configuration from being modified by an unauthorized
instance, an optional access code can be specified at the time when a new
configuration is written.

If an access code is configured for a configuration, this password must be
supplied at each subsequent update attempt. If the supplied password does
not match the stored password, the update is rejected.

For YubiKey 2 devices, each configuration has its own configuration access
code.

5.8 Automatic navigation
In YubiKey 1, prior to version 1.3.5, a function was provided to allow
automatic navigation when the device is inserted, where an URL string was
outputted. This function is discouraged and has been removed in recent
versions as it implies potential security and compatibility issues.

© Yubico, 2015 Page 32 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

6 Implementation details
6.1 The Yubico OTP generation algorithm

The YubiKey OTP generation is made up of the following fields

Mnemonic Byte offset Size Description
uid 0 6 Private (secret) id
useCtr 6 2 Usage counter
tstp 8 3 Timestamp
sessionCtr 11 1 Session usage counter
rnd 12 2 Random number
crc 14 2 CRC16 checksum

6.1.1 Private ID
The private id field comprises 6 bytes copied from the private id field
configuration value. This field can be used to store a private identity if
shared encryption keys are used. Otherwise, this field can be set to all
zeroes.

The verifying instance should verify this field against the expected value. If
an OTP is encrypted with a non-matching AES key, this field will be invalid
and the OTP shall in this case be rejected.

Alternatively, this field can be initiated with a random number, adding
additional secret information in the plaintext.

When using the YubiKey in challenge-response mode, the private id is
XORed with the challenge prior to OTP generation. Therefore, validation of a
decrypted OTP response involves XORing the private id with the original
value. The result shall then match the issued challenge if the OTP is valid.

6.1.2 Usage counter
The usage counter is a non-volatile counter which value is preserved even
when the device is unplugged. The first time the device is used after a
power-up or reset, this value is incremented by 1 and the session counter is
set to zero

Bit 15 of this field is used by the YubiKey 1 to indicate that a trigger was
initiated by an external (keyboard) trigger rather than by the integrated
button. The verifying instance shall mask this bit before verifying the result.
For the YubiKey 2, this bit is always zero.

For compatibility reasons, this means that the field is only 15 bits wide,
giving a usable range of 1 – 0x7fff. When this counter reaches 0x7fff it stops
there. One could think that this could lead to a YubiKey being practically
useless during its lifetime if this occurs. However, considering a YubiKey
being used five times a day, 365 days per year, it will take 18 years for the
counter to get stuck. Furthermore, as this counter only increment the first
time after power up / reset, the practical lifetime is even longer.

If for some strange reason the counter would ever reach the final value, it is
probably so worn out that a replacement would be necessary. If it still looks

© Yubico, 2015 Page 33 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

fine, the device can still be re-configured which would cause the counter to
be reset.

Note that this finite nature of the counter makes Yubico OTP mode less
practical to use in challenge-response settings where the interaction occurs
very often. Consider HMAC-SHA1 mode instead for such settings.

The field is stored in little-endian format, i.e. the least significant byte being
stored first.

6.1.3 Timestamp
The timestamp is a 24-bit field incremented with a rate of approximately 8
Hz. The timestamp value is set to a random value after startup from the
internal random number generator.

This field may be used by the verifying party to determine the time elapsed
between two subsequent OTPs received during a session. See section
2.3.3for further information about this topic.

This field wraps from 0xffffff to 0 without any further action. If used by the
verifying party, this condition must be taken into account. Given an 8 Hz
rate, the timer will wrap approximately every 24 days.

The field is stored in little-endian format, i.e. the least significant byte being
stored first.

6.1.4 Session usage counter
At power up, the session usage counter is initiated to zero. After each new
OTP has been generated, this field is incremented by one. If this field wraps
from 0xff to 0, the usage counter field is automatically incremented.

6.1.5 Random number
A 16-bit random number is picked from the internal random number
generator to add some additional entropy to the final result. One can always
argue if this adds any additional security, but it surely does not hurt.

6.1.6 Checksum
A 16-bit ISO13239 1st complement checksum is added to the end. The
checksum spans all bytes except the checksum itself. The checksum is
verified by calculating the checksum of all bytes, including the checksum
field. This shall give a fixed residual of 0xf0b8 if the checksum is valid. If the
checksum is invalid, the OTP shall be rejected.

The field is stored in little-endian format, i.e. the least significant byte being
stored first.

6.2 Modified Hexadecimal (Modhex) encoding
The Modhex encoding scheme was invented to cope with potential keyboard
mapping ambiguities. See section 2.1.3for background information.

The Modhex mapping done like with hexadecimal coding but the output is
mapped in the following way:

0 c 4 f 8 j c r

1 b 5 g 9 k d t

2 d 6 h a l e u

© Yubico, 2015 Page 34 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

3 e 7 i b n f v

Examples:

● The hexadecimal byte 0x47 is represented as fi
● The hexadecimal string 0xba 0xad 0xf0 0x0d is represented as

nlltvcct

6.3 CRC16 calculation and verification
The CRC16 algorithm used follows the ISO13239 standard. The schoolbook
implementation can be done as:
static unsigned short crc;

void initCrc(void)
{
 crc = 0xffff;
}

void updCrc(unsigned char val)
{
 int i, j;

 crc ̂ = val;
 for (i = 0; i < 8; i++) {
 j = crc & 1;
 crc >>= 1;
 if (j) crc ̂ = 0x8408;
 }
}

unsigned short getCrc(const unsigned char *bp, int bcnt)
{
 initCrc();
 while (bcnt--) updCrc(*bp++);

 return crc;
}

unsigned char verifyCrc(const unsigned char *bp, int bcnt)
{
 initCrc();
 while (bcnt--) updCrc(*bp++);

 return crc == 0xf0b8;
}

6.4 Random number generator
The standard YubiKey has a built-in random number generator that involves
a Linear Feedback Shift Register (LFSR) that is fed from analog output of the
touch sensor as well as asynchronous data from USB traffic.

Although not directly critical to the security of the YubiKey or the OTP
generation algorithm, the random number generation yields reasonably high
quality numbers given these unrelated sources.

The YubiKey NEO features a high-quality, cryptographically secure random
number generator.

© Yubico, 2015 Page 35 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

6.5 USB programming interface
Configuration of the YubiKey is done via the USB interface. Since the
keyboard interface is basically a one-way function, i.e. sending keystrokes,
writing configuration data is done by the means of writing HID feature
reports.

A HID feature report has a usable payload of 8 bytes where the last byte is
used to identify the sequence number, leaving 7 bytes for configuration
data. Writing a full configuration frame involve writing of 10 feature reports
= 70 bytes.

When the final feature report has been received, the frame checksum is
verified over the first 64 bytes. If this matches the expected value, the
configuration frame is considered valid.

The access code for the particular configuration is verified to match the
supplied one. If they do not match, the update request is rejected.
Otherwise the configuration record is written and the status program
sequence number is incremented.

The programming application shall read the sequence number via a status
query prior to performing an update operation. If the sequence number has
not been incremented after the update operation, the operation has failed.

6.5.1 USB status query
The YubiKey status can be read by the means of a feature report. Apart
from verifying configuration operations as described above, the status query
is used by factory testing to verify the functionality of the touch sensor.

6.5.2 Serial number readout (YubiKey 2.2 only)
The Device serial number is read by writing a serial number read command.
The serial number is then instantly read using a single feature report.

6.5.3 Challenge-response mode (YubiKey 2.2 only)
In challenge-response mode, the response spans multiple feature reports.
Furthermore, as the response may not be available instantly (processing
time and user button accept), a completion poll bit is implemented. Once
set, the result is read as a sequence of feature repors

6.5.4 Additional resources
Please refer to the YubiKey low-level Interface description for a detailed
explanation of the USB low-level interface.

Detailed examples and information of the implementation can be found in
published source code libraries, accessible via the Yubico developer’s web
page.

© Yubico, 2015 Page 36 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

7 The YubiKey NEO
The YubiKey NEO is an enhanced version of the standard YubiKey, featuring
the following additional features

● Backwards-compatible with standard YubiKey

● Comprises a Common Criteria EAL5+ compliant secure element for
storage and processing of cryptographic information

● Features a USB CCID Smartcard functionality.

● FIDO U2F support from firmware version 3.3

● JavaCard 3.0 / JCOP 2.4.2 R1 execution environment

● ISO14443A RFID/NFC interface

● NDEF applet installed for interaction with YubiKey functionality

● Mifare Classic emulation

7.1 Standard YubiKey compatibility
The NEO is backwards compatible with the standard YubiKey, excluding the
following functions:

● Static password manual update (4.2)

● Intra-packet delays (5.1.4, 5.1.5)

The USB product ID is different, but the command set is identical. This
allows the NEO to be used with existing configuration- and API tools.

7.2 NDEF messages
The NEO supports NDEF (NFC Data Exchange Format) messages, which can
be configured through the YubiKey configuration interface and then be used
through the NFC interface.

An NDEF message is configured for an existing OTP configuration. The NEO
supports all specified record types, with the most common ones being the
URI- and TEXT types. The resulting NDEF message is constructed as a
concatenation between a configured URI and a generated OTP.

Example:

Configured URI: http://www.testsite.com/?otp=

Generated OTP: niljijfcnfdbjeduvuthuugnvuuvgrnh

Result: http://www.testsite.com/?otp=niljijfcnfdbjeduvuthuugnvuuvgrnh

The NEO emulates a "Type 4" tag and NFC interrogators that supports this
type can get a "tap-and-go" experience.

7.3 Modes of operation
The NEO is shipped in YubiKey standard mode, where it is compatible with a
standard YubiKey.

The NEO can be configured to operate in one of three modes:

© Yubico, 2015 Page 37 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

● Mode 0: YubiKey standard keyboard emulation (OTP) only (default)
The Smartcard mode is disabled

● Mode 1: Smartcard (CCID) mode only
The YubiKey mode is disabled

● Mode 2: Composite YubiKey standard + CCID mode

From firmware version 3.3, additional modes have been added with the
introduction of U2F support:

● Mode 3: Universal Second Factor (U2F) mode only.

● Mode 4: Composite OTP- and U2F mode.

● Mode 5: Composite U2F- and CCID mode.

● Mode 6: Composite OTP-, U2F- and CCID mode.

Each mode has its separate USB device- and interface descriptors, including
a unique vendor id (VID). Once the mode has been changed, the device has
to be power-cycled for the USB interface changes to take effect.

7.4 U2F mode of operation (version 3.3 and later)
The YubiKey U2F mode complies with the FIDO alliance U2F version 2
standard for U2F messages and U2FHID transport.The YubiKey button is
used for test of user presence, where the user physically acknowledges
registration- and authentication messages.

For more information about U2F, please refer to relevant FIDO U2F
documentation.

7.5 CCID mode of operation
When configured in CCID mode, the NEO exposes a USB interface compliant
to the Integrated Circuit(s) Cards Interface Device (CCID) specification. A
host application can then send commands directly to the secure element of
the NEO, just like if the NEO was attached as a smartcard in a CCID
smartcard reader.

In CCID mode, the NEO communicates using the T=1 smartcard protocol.

In CCID-only mode, the NEO can be configured to have card presence
states, emulating having a smartcard reader where a smartcard is inserted
and removed. The configurations are:

● Always present
The NEO reports that a card is permanently present. Touching the
YubiKey button will cause the LED to toggle and the state of this
flip-flop can be read through the secure element.

● Insert- and removal enabled
After insertion of the NEO, it reports that a smartcard reader is
present, but no smartcard is inserted. By touching the YubiKey
button, the NEO reports that a smartcard has been inserted.
Touching the button again causes the NEO to report that the card
has been removed.

7.6 Auto eject enabled
The NEO will automatically report that the card has been removed after a
configured time of inactivity.USB composite modes and concurrency.

© Yubico, 2015 Page 38 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

When more than one function is enabled simultaneous (modes 2, 4, 5 and
6), the device becomes what is known as a “USB composite device”. With
this, one physical device (the YubiKey NEO) can expose more than one
interface, which in this case is a combination of OTP-, U2F- and CCID
modes.

In the case of a composite devices, some usability- and functional
limitations arise as all interfaces share a single resource.

● Any CCID mode: When enabled, this function becomes default and
the LED signals the same behavior as when in CCID-only mode.
When either of the other functions (YubiKey standard or U2F) are
accessed, these will use the secure element, hence interfering with
the CCID mode of operation. In order to handle this, the CCID
interface then sends a “card eject” command to the host, simulating
that the card has been ejected and cannot be accessed. When the
other function has been completed, the CCID interface then sends a
“card insert” command to the host after a 3 second dwell time,
telling it that the CCID functionality is available again. The CCID
button functionality is disabled in composite modes.

● OTP+U2F mode: In this mode, the OTP mode is the default and the
button and LED works just like in OTP-only mode. The U2F mode is
activated by a request via the U2F interface, disabling the OTP
functionality. When the U2F interface has been idle for more than 3
seconds, the OTP functionality becomes enabled again.

7.7 Contact-less mode (NFC) of operation
The contact-less (NFC) mode of operation is automatically enabled when the
device is not plugged into the USB port. In NFC mode, the device exposes
an ISO14443A interface, supporting the ISO14443-4 (T=CL) protocol. The
command set is identical to the CCID mode of operation.

The YubiKey button and LED are not enabled in contactless mode.

7.8 Device status LED
The status LED reflects the current device state, which in the case of a
composite device also depends on which interface is active.

Enumeration in progress
A burst of three flashes every 1.5 second

7.8.1 YubiKey OTP mode
The behavior in YubiKey OTP mode is the same as for the standard YubiKey
(see section 3.5)

7.8.2 CCID mode
Interface not acquired, button not touched
Constant off with a short flash on every 1.5 second

Interface acquired, button not touched
Constant on with a short flash off every 1.5 second

CCID activity
Every time an APDU is exchanged, the LED flashes

© Yubico, 2015 Page 39 of 40 Version: Yubikey Manual 3.4

The YubiKey Manual

7.8.3 U2F mode
Idle
The LED is constant off

Touch (test of user presence) pending
The LED flashes 50:50 at a rate of about once a second

Button touched
The LED is constantly off

7.9 Javacard execution enviroment
The NEO is built around a secure element, featuring Javacard 3.0 and JCOP
2.4.2 R1, which complies with the Global Platform specification version 2.1.
With this, Javacard applets designed for traditional smartcards can be
loaded into the NEO and accessed using tools and middleware that works
with Javacard and CCID, such as PC/SC.

The YubiKey- and NDEF functionality is provided though pre-loaded Javacard
applets. In YubiKey mode, all YubiKey functionality is provided through the
USB controller, which makes the necessary translations, transparent to the
user.

Access to the Global Platform manager requires the card manager keys,
which are generated and kept secret by Yubico at time of manufacturing.
Yubico provides a developer program to access this restricted information.
Contact Yubico sales for additional information.

© Yubico, 2015 Page 40 of 40 Version: Yubikey Manual 3.4

