
The specifications and information in this document are subject to change without notice. Companies, names, and data used
in examples herein are fictitious unless otherwise noted. This document may not be copied or distributed by any means, in
whole or in part, for any reason, without the express written permission of RCDevs.

Copyright (c) 2010-2017 RCDevs SA. All rights reserved.
http://www.rcdevs.com

WebADM and OpenOTP are trademarks of RCDevs. All further trademarks are the property of their respective owners.

Limited Warranty

No guarantee is given for the correctness of the information contained in this document. Please send any comments or
corrections to info@rcdevs.com.

HARDWARE SECURITY
MODULE

CONFIGURATION (HSM)

http://www.rcdevs.com/
mailto:info@rcdevs.com

This document describes how to configure correctly the Yubico YubiHSM and enable it through the WebADM setting, in order to

provide both hardware level encryption and random seed generation (the strongest Enterprise security available) in your RCDevs

product. WebADM only needs a subset of commands to work with the YubiHSM and the reader should notice that this document is

not a guide describing all possible modes of operation provided by the device itself. You should directly contact Yubico for more

details and all relevant technical documentation you may need for your own purpose and context of use.

When enabled, hardware security complements the WebADM software encryption transparently; very sensitive user data like

Token seeds are encrypted with HSMs whereas other (less sensitive) data are encrypted using WebADM software encryption. This

double encryption method has the advantage to provide the same level of efficiency and security as with usual expensive HSM

modules.

WebADM HSM implementation supports several hardware modules in failover and load-balanced mode. Moreover, the addition or

removal of an HSM module is hot-plug. Like with the software encryption, multiple HSM key handles can be used concurrently

and the rollout of a new AES hardware master key is supported.

The Yubico YubiHSM provides a low-cost way to move out sensitive information and cryptographic operations away from a

vulnerable computer environment without having to invest in expensive dedicated Hardware Security Modules (HSMs). Although

the main application area is for securing Yubico OTP authentication operations, several generic cryptographic primitives allow for

a wider range of applications. The hardware is a small USB device, entirely powered from the host computer.

No low-level drivers are needed as the YubiHSM implements the USB-CDC serial communication class. The YubiHSM is intended

to operate in conjunction with a host application (WebADM in our case).

The YubiHSM actually can be configured with any terminal able to use a standard serial protocol. The following list contains all we

 Hardware Security Module Configuration (HSM)
HSM

1. Product Documentation

 Note

HSM is supported in WebADM since version 1.3.0.

2. Product Overview

3. System Requirements

https://www.rcdevs.com/docs/tags/hsm









needed to build the example :

The HSM itself to configure.

Linux CentOS 6.5 (default installation) running on a decent machine equipped with at least one USB port available.

A USB A-A extension cable if access to the USB port is awkward.

A needle, a pen with a long tip, a straightened paperclip or equal to reach the switch (a distinct tactile “click” shall be noticed

when the switch is found). The USB port must be of course both enabled and visible from the Linux box you’re connected to. If

you plan to proceed using a virtualized machine, do not forget to map a virtual USB port to the corresponding physical one on

the host running that virtual machine. Please refer to the documentation of the virtualization tool you use if you’re not aware of

USB port mapping.

The YubiHSM emulates a USB CDC (Communication Device Class) device, thereby allowing simple integration with serial

communication libraries and terminal programs. Both Linux and MacOSX systems provide default configuration and drivers for

the CDC class, installing these as communication ports found under /dev/ttyxxx. At power-up, the YubiHSM enters the selected

mode of operation if properly configured. By activation of the configuration mode switch, while the device is inserted, this is

overridden and configuration mode is entered. While in configuration mode, the YubiHSM can be configured using any terminal

program of choice (this document will describe how to proceed using the command screen).

If the YubiHSM is unconfigured, it enters configuration mode automatically without having to activate the switch. Place the

YubiHSM on the table and hold the key pressed while inserting the extension cable plug in the host USB port.

Keep the switch pushed while inserting the device into the host USB port and hold it activated until the LED by the switch starts to

4. Setting up for HSM Mode of Operation

4.1 Entering Configuration Mode







flash. You can then release the switch. If you successfully entered in configuration mode, the indicator LED should blink regularly

(50-50%) at 0.8 Hz. If not, unplug the HSM and try to plug it while maintaining the switch pressed again. This procedure may seem

a bit awkward, but remember that it is only performed during device configuration. One aspect of this is that it should be

awkward to avoid unintentional configuration mode entry.

On the Linux system, the YubiHSM is connected to, open a shell (with user root or a user having both read and write permissions

on nodes attached to CDC serial devices (these nodes are typically created as /dev/ttyACMx/dev/ttyACMx and belong to a group named

dialout). The first thing is to check that the kernel detected the HSM and created a corresponding device node. This can be done

executing a simple ls command under the folder /dev//dev/ as shown below.

Once you identified which node corresponds to the device, you can connect to the HSM configuration interface using any tool able

to display a terminal through a serial port. The command screen is generally provided in all Linux distributions and is even often

already available from a default installation. Just use it, passing the device node path in parameter to launch the HSM

configuration interface.

At this stage, you should see a screen containing nothing excepted a new prompt HSM>, indicating you’re talking to the HSM itself

and able to configure it through an appropriate set of commands.

The configuration procedure contains three steps:

The main flags toggling.

The password setting for the configuration mode.

The loading of the keys.

Steps one and two are both described in the following paragraph while the third one will be covered in the next one.

4.1.1 Connecting to the HSM using a Terminal

[hsm@hsm ~]$ ls -l /dev/ttyASM*
crw-rw----. 1 root dialout 166, 0 2 juin 17:16 /dev/ttyACM0

 Note

Note that in this example, the device node is /dev/ttyACM0 and is owned by root.dialout, but it can differ slightly according to the

Linux distribution you’re currently running. In that case, you might have to adapt a bit all the steps previously described in order to

find out the right node assigned to the HSM. A good way to find it is to launch ll -rt /dev/tty* | tailll -rt /dev/tty* | tail before and

after connecting the HSM.

[hsm@hsm ~]$ screen /dev/ttyACM0

4.1.2 Configuring the HSM

The YubiHSM implements a set of internal commands in order to provide all cryptographic primitives a host could need to achieve

its own higher level operations. The device allows to enable/disable a subset of them to restrict the use in few particular contexts.

At the prompt, type hsmhsm then the key [enter][enter] to launch the toggle bit menu as shown below:

You can see the list of commands able to be switched on/off, each of them preceded by a letter. The letter corresponds to the key

you must press to toggle the flag. It’s also possible to toggle the whole set of command at once using [space][space] . Press [space]

key in order to disable all instructions (value is 00000000 when all flags are disabled).

Once all instruction flags are reset we must enable instructions WebADM requires. Press respectively key [h] and key [i] to enable

instructions YSM_AES_ECB_BLOCK_ENCRYPT and YSM_AES_ECB_BLOCK_DECRYPT. At this stage, you must see the flags

value set to 00006000.

4.1.2.1 Flags and Password Settings

Enabled flags 7fffffff =
YSM_AEAD_GENERATE,YSM_BUFFER_AEAD_GENERATE,YSM_RANDOM_AEAD_GENERATE,YSM_AEAD_DECRYPT_CMP,YSM_DB_YUBIKEY_AEAD_STORE,YSM_AEAD_YUBIKEY_OTP_DECODE,YSM_DB_YUBIKEY_OTP_VALIDATE,YSM_AES_ECB_BLOCK_ENCRYPT,YSM_AES_ECB_BLOCK_DECRYPT,YSM_AES_ECB_BLOCK_DECRYPT_CMP,YSM_HMAC_SHA1_GENERATE,YSM_TEMP_KEY_LOAD,YSM_USER_NONCE,YSM_BUFFER_LOAD

a:YSM_AEAD_GENERATE b:YSM_BUFFER_AEAD_GENERATE
c:YSM_RANDOM_AEAD_GENERATE d:YSM_AEAD_DECRYPT_CMP
e:YSM_DB_YUBIKEY_AEAD_STORE f:YSM_AEAD_YUBIKEY_OTP_DECODE
g:YSM_DB_YUBIKEY_OTP_VALIDATE h:YSM_AES_ECB_BLOCK_ENCRYPT
i:YSM_AES_ECB_BLOCK_DECRYPT j:YSM_AES_ECB_BLOCK_DECRYPT_CMP
k:YSM_HMAC_SHA1_GENERATE l:YSM_TEMP_KEY_LOAD
m:YSM_USER_NONCE n:YSM_BUFFER_LOAD
o:FLAG_DEBUG

Toggle bit (space = all, enter =)exit

Enabled flags 00000000 = None

a:YSM_AEAD_GENERATE b:YSM_BUFFER_AEAD_GENERATE
c:YSM_RANDOM_AEAD_GENERATE d:YSM_AEAD_DECRYPT_CMP
e:YSM_DB_YUBIKEY_AEAD_STORE f:YSM_AEAD_YUBIKEY_OTP_DECODE
g:YSM_DB_YUBIKEY_OTP_VALIDATE h:YSM_AES_ECB_BLOCK_ENCRYPT
i:YSM_AES_ECB_BLOCK_DECRYPT j:YSM_AES_ECB_BLOCK_DECRYPT_CMP
k:YSM_HMAC_SHA1_GENERATE l:YSM_TEMP_KEY_LOAD
m:YSM_USER_NONCE n:YSM_BUFFER_LOAD
o:FLAG_DEBUG

Toggle bit (space = all, enter =)

set

exit

Now, hit [enter][enter] to leave the toggle flags menu.

Now, an optional configuration password can be set. Such password allows the configuration to be changed after exiting from

configuration mode.

Enter g then [enter][enter] to generate a random password.

Once you typed [enter][enter] you should get the generated password. Keep it stored securely for future reference. The two next

settings can be skipped as we won’t need any Yubikey public ids, neither AEADs in our context of use. Just hit [enter][enter] twice,

leaving them both untouched.

The final step is to confirm the selected configuration and thereby erase any previously stored data.

Confirm current config being erased (type yes and hit [enter][enter]).

The prompt is now indicating you some internal changes were applied, but they’re not committed yet. In order to proceed, just

type keycommit then hit [enter][enter] . The commitment should occur and the prompt be back to its initial value (HSM>) as

illustrated.

Enabled flags 00006000 = YSM_AES_ECB_BLOCK_ENCRYPT,YSM_AES_ECB_BLOCK_DECRYPT

a:YSM_AEAD_GENERATE b:YSM_BUFFER_AEAD_GENERATE
c:YSM_RANDOM_AEAD_GENERATE d:YSM_AEAD_DECRYPT_CMP
e:YSM_DB_YUBIKEY_AEAD_STORE f:YSM_AEAD_YUBIKEY_OTP_DECODE
g:YSM_DB_YUBIKEY_OTP_VALIDATE h:YSM_AES_ECB_BLOCK_ENCRYPT
i:YSM_AES_ECB_BLOCK_DECRYPT j:YSM_AES_ECB_BLOCK_DECRYPT_CMP
k:YSM_HMAC_SHA1_GENERATE l:YSM_TEMP_KEY_LOAD
m:YSM_USER_NONCE n:YSM_BUFFER_LOAD
o:FLAG_DEBUG

Toggle bit (space = all, enter =) exit

Enter cfg password (g to generate) g

Enter cfg password (g to generate) 1639186da9279b584ace8ba445dedefa
Enter admin Yubikey public id 001/008 (enter when)
Enter master key (g to generate)

done

Confirm current config being erased (yes) yes - - type wait done

Both the flags and the password configuration are done at this stage. The next is to load one or more key into the device.

WebADM performs AES encryption before storing sensitive data into directories and/or databases. The YubiHSM provides, of

course, a way to store all the necessary AES keys and reference them later for each operation according to the need. Typically,

keys are stored with a unique id called key handle, allowing a request to reference a particular one at any time. In practice, only

one key is required to use the YubiHSM with WebADM, but several can be stored. The command to load such key is keyload. Just

type it then hit [enter[enter].

The interface will then invite you to enter the set of keys as illustrated.

To load a key, just enter manually or paste in (recommended) the key entry, then press [enter]. A key entry always contains two

fields separated by a comma. The first one is the key handle and second corresponds to the key itself (data).

Such entry looks like this:

00000005,46e62142239340ce3914bdc65cf087a3273373dab28e0d54e519f4802a17989d

Both fields are encoded in hexadecimal. The key handle must be 4 bytes long (8 hex digits) and the key data 32 bytes long (64 hex

digits). In each YubiHSM it is possible to store up to 64 keys. In practice, we strongly recommend you to keep a file containing all

your key entries and to copy/paste the keys you need each time you reconfigure one of your YubiHSM. This is undoubtedly the

best way to proceed as if you plan to use several YubiHSM, they MUST BE configured EQUAL in order to maintain key consistency.

If you do not have such a file already create, note you can generate these 32 bytes long keys in the right format (hexadecimal)

using the following command in a shell:

Here’s an example of a file containing 5 entries:

HSM (keys changed)> keycommit - Done
HSM>

4.1.2.2 Loading Keys Into the Internal Key Store

HSM> keyload

HSM> keyload - Load key data now using flags 00006000. Press ESC to quit

[hsm@hsm ~]$ openssl rand -hex 32
8d410cfdef781ee52d047bddde781f599dc517e7cda169d14168abdfaf9a703d



You need to copy the key from the file, for example

0000000E,8d410cfdef781ee52d047bddde781f599dc517e7cda169d14168abdfaf9a703d, past it in the terminal and hit [enter][enter] :

After all your keys are stored, hit [esc] and you should get something like this:

Type keycommit + [enter] :

All is configured now. To quit the YubiHSM interface, just type exit then [enter][enter] . The indicator LED of the YubiHSM is blinking

differently (still 50-50% but at 3 Hz), indicating it left the configuration mode and it’s ready to operate, waiting for commands. You

can now detach the screen from the serial device node ([ctrl]+[a][ctrl]+[a] then [d][d]).

There are only two settings to be configured in WebADM to enable hardware encryption with your YubiHSM. Edit the WebADM

main configuration file /opt/webadm/conf/webadm.conf and configure the following settings:

hsm_model: WebADM supports hardware security modules. When enabled, the hardware-based security complements the

KHANDLE KEY
------- ---
0000000E,8d410cfdef781ee52d047bddde781f599dc517e7cda169d14168abdfaf9a703d
0000000F,e6015d6fa60efb6cee1aef393ed9f750dc99b10da3b03a57f8f509ccc35e5536
00000010,b9938355702a4119fa4ae30b044e716f6c268da8301bece89aa8bf9b89bd7c05
00000011,5ad0f5bf3770ef1f3fc25d3128471582a4e84e846c0bc4340de9fb3fee905413
00000012,571942b0465b931681a2a2fa815feadbf255d6b4c57f045479f84e8943e00b95

HSM> keyload - Load key data now using flags 00006000. Press ESC to quit
0000000e - stored ok

HSM> keyload - Load key data now using flags 00006000. Press ESC to quit
0000000e - stored ok
0000000f - stored ok
00000010 - stored ok
00000011 - stored ok
00000012 - stored ok

HSM (keys changed)> keycommit - Done

[hsm@hsm ~]$ screen /dev/ttyACM0
[detached]

5. Configuring WebADM for Hardware Encryption



WebADM default software encryption: very sensitive user data like Token secrets or inventory data are transparently encrypted

by the connected HSM(s) whereas other (less sensitive) data are encrypted using WebADM software encryption. WebADM

currently supports Yubico’s YubiHSM. Several YubiHSM modules can be used concurrently (in failover and load-balanced

mode). Moreover, the addition or removal of HSM modules is hot-plug.

hsm_keyid: Like with the software encryption, multiple HSM key IDs (ie. key handles) can be used concurrently and the rollout

of a new AES hardware master key is supported. You can set several encryption key IDs for automatic key rollout. All the

defined keys are used for decrypting data. And the first defined key is used to (re-)encrypt data.

Parameters look like this:

You can also obtain information about your HSM with yubihsm:

This manual was prepared with great care. However, RCDevs S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs S.A. does not enter into any responsibility in this respect. The hardware
and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs S.A. reserves all rights, especially for
translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-readable language
without the prior written permission of RCDevs S.A. The latter especially applies for data processing systems. RCDevs S.A. also reserves all communication rights (lectures, radio and
television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective manufacturers and as such are subject to the
statutory regulations. Product and brand names are the property of RCDevs S.A. © 2019 RCDevs SA, All Rights Reserved

encrypt_hsm Yes

hsm_model YubiHSM
hsm_keyid 14 # correspond to the key 0000000e in hexadecimal notation

[hsm@hsm ~]$ /opt/webadm/bin/yubihsm

YubiHSM Unlocker tool version 1.4.3 (382c1ecf4eb60dae767412e424d001cd87ea947e)
Copyright (c) 2010-2017 RCDevs SA, All rights reserved.

Found 1 HSM device:
1) YubiHSM N° 8D9626675057: UNLOCKED

	Hardware Security Module Configuration (HSM) HSM
	1. Product Documentation
	2. Product Overview
	3. System Requirements
	4. Setting up for HSM Mode of Operation
	4.1 Entering Configuration Mode
	4.1.1 Connecting to the HSM using a Terminal
	4.1.2 Configuring the HSM
	4.1.2.1 Flags and Password Settings
	4.1.2.2 Loading Keys Into the Internal Key Store

	5. Configuring WebADM for Hardware Encryption

