
The specifications and information in this document are subject to change without notice. Companies, names, and data used
in examples herein are fictitious unless otherwise noted. This document may not be copied or distributed by any means, in
whole or in part, for any reason, without the express written permission of RCDevs.

Copyright (c) 2010-2017 RCDevs SA. All rights reserved.
http://www.rcdevs.com

WebADM and OpenOTP are trademarks of RCDevs. All further trademarks are the property of their respective owners.

Limited Warranty

No guarantee is given for the correctness of the information contained in this document. Please send any comments or
corrections to info@rcdevs.com.

PAM OPENOTP PLUGIN

http://www.rcdevs.com/
mailto:info@rcdevs.com

On Unix-like systems, processes such as the OpenSSH daemon need to authenticate the user and learn a few things about him or

her (user ID, home directory, …). Authentication is done through a mechanism called Pluggable Authentication Modules, and

retrieving information about users (or even groups, hostnames, …) is done through another mechanism, called the Name Service

Switch.

In this tutorial, we will allow users accounts stored as posixAccount objects in an LDAP server to be considered valid in a system,

in addition to the locally-defined ones, by configuring NSS. We will then configure PAM to delegate authentication to OpenOTP

accounts stored on the LDAP server.

 PAM OpenOTP Plugin
LDAP PAM NSS SSH

How To Install and Configure PAM OpenOTP Plugin to Enable Multifactor
Authentication on Linux Machines

Simple login flow

Push Login flow

1. Background

https://www.rcdevs.com/docs/tags/ldap
https://www.rcdevs.com/docs/tags/pam
https://www.rcdevs.com/docs/tags/nss
https://www.rcdevs.com/docs/tags/ssh

When authenticating a user through PAM, a process will read /etc/pam.d/, where is the name of the service that the process

implements. Each line in that file mentions a module to load, how to use it, and what decision to make based on the result. We

will install the pam_openotp.so module and add a line mandating its use to contact your OpenOTP server. In CentOS 6, most

service-specific files actually defer to one of two generic files, password-auth and system-auth, and we will modify them.

Processes that need to find out, say, what users or groups exist, use a set of functions implemented by the C standard library.

These functions will read the file /etc/nsswitch.conf and, according to the information it contains, load modules in the form of

libraries and gets the needed information through these modules in a certain order. We will install the NSS -based spankey

module to collect user account information on our LDAP server. If pam_ldap module returns the account information you don’t

need to install spankey, this particular case is not explained in this documentation.

pam_ldap.so, nss_ldap.so and nslcd are not maintained by RCDevs. The first was written by PADL Software Pty Ltd: PAM LDAP,

and the latter two are part of the nss-pam-ldapd package, maintained by Arthur de Jong NSS PAM LDAP.

Firstly, you must have a configured OpenOTP and SpanKey server available through WebADM.

Then you have to install spankey_client, pam_openotp and rcdevs_libs & nscd packages on your server on which you want 2

Factor Authentication. All packages are available on RCDevs Repository. The best way is to configure RCDevs Repository to install

every package with our repository.

On a RedHat, CentOS or Fedora system, you can use our repository, which simplifies updates. Add the repository:

You are now able to install RCDevs packages on your system:

On a Debian and Ubuntu system, you can use our repository, which simplifies updates. Add the repository:

Update apt cache:

You are now able to install RCDevs packages on your system:

2. Prerequisites

yum install https://www.rcdevs.com/repos/redhat/rcdevs_release-1.0.0-0.noarch.rpm

yum install rcdevs_libs pam_openotp nscd spankey_client

wget https://www.rcdevs.com/repos/debian/rcdevs-release_1.0.0-0_all.deb
apt-get install ./rcdevs-release_1.0.0-0_all.deb

apt-get update

http://www.padl.com/OSS/pam_ldap.html
http://arthurdejong.org/nss-pam-ldapd/
https://www.rcdevs.com/repos
https://www.rcdevs.com/docs/howtos/repository/add_repo/

After downloading and installing the previous packages, we can start the configuration of these different products.

To use your LDAP account on UNIX servers, you have to extend your account to UNIX through WebADM GUI. To extend your

account to UNIX, click on your account on the left tree, you can find on the user details, the option Add Extension , select

UNIX Account and click on Add button.

You will see the following screen after clicking Add :

apt-get install rcdevs-libs pam-openotp nscd spankey-client

3. WebADM Accounts Configuration

Click on Proceed and Extend Object to finish the UNIX extension for your account.

If you want to use Hardware Token for this account, don’t forget to change OTP method and Token Type to LDAPOTP/TOKEN else

you will have an error message like Account Require Missing Data when you will try to log in.

 Note

At this step, be careful to not use a UID already assigned to an existing user. We advise starting from uid=1000…

4. SELinux Configuration (Client Machine)

If you encountered some problems caused by SELinux so, then it’s recommended to set SELinux to permissive mode.

For RedHat/CentOS 6:

For RedHat/CentOS 7:

For Debian:

By default, SELinux is not installed and configured on Debian distributions. Look the following link to have more information

 Note NSCD

You have to restart nscd service if you disable SELinux configuration after having configured SpanKey Client. SELinux policies are

loaded until restart each service where SELinux is configured.

bash-4.1# vi /etc/selinux/config

SELINUX=permissive

SELINUXTYPE=targeted

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.

SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.

bash-4.1# vi /etc/sysconfig/selinux

SELINUX=permissive

SELINUXTYPE=targeted

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.

SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes are protected.
mls - Multi Level Security protection.

about SELinux on Debian.

When the spankey_client package is installed, a configuration script is available to configure it. To execute this script, you just

have to run /opt/spankey/bin/setup in a shell prompt. The configuration of spankey client starting…

At this step, you have to log in on the WebADM Admin GUI to approve the SSL Certificate Request in pending…

That’s it for SpanKey client, we just use it for the NSS part so configuration is easy.

5. SpanKey Client Setup (Client Machine)

root@ubuntu18client:/home/ubuntu18-client# /opt/spankey/bin/setup
Enter one of your running WebADM server IP or hostname: 192.168.3.131
Detected hostname is 'ubuntu18client'. Would you like to use it as client id (y/n)? [N]
Do you want to enable SpanKey Client for OpenSSH server (y/n)? [N]
Do you want to enable SpanKey Client NSS plugin (y/n)? [Y]
Do you want to register SpanKey Client logrotate script (y/n)? [Y]
Do you want SpanKey Client to be automatically started at boot (y/n)? [Y]

Primary OpenOTP service URL is: 'https://192.168.3.131:8443/spankey/'
Secondary OpenOTP service URL is: 'NONE'.
Use 'ubuntu18client' as client id: No
Enable SpanKey Client for OpenSSH server: No
Enable SpanKey Client NSS plugin: Yes
Register SpanKey Client logrotate script: Yes
SpanKey Client must be automatically started at boot: Yes

Do you confirm (y/n)?: y

Applying SpanKey Client setting from default configuration files... Ok
Retrieving WebADM CA certificate from host '192.168.3.131'... Ok
The setup needs now to request a signed 'SpanKey' client certificate.
This request should show up as pending in your WebADM interface and an administrator
must accept it.
Waiting for approbation... Ok

Updating file ... Ok
Updating file ... Ok
Registering SpanKey Client service... Ok
Adding logrotate script... Ok

SpanKey Client has successfully been setup.

IMPORTANT: Do not forget to perform the following action before you this session:
 - Start SpanKey (spankey spankey start)
 - Restart

'/etc/nsswitch.conf'
'/etc/pam.d/common-account'

exit
/opt/ /bin/

'nscd'

https://wiki.debian.org/SELinux/Setup

Note: In the above example, we selected « No » to enable SpanKey for OpenSSH server because in our case we’ll use SpanKey only

for the NSS part. SpanKey for OpenSSH is a separate product, used in a normal way as an SSH Key Management Service requiring

an enterprise license (beyond 5 managed servers). To find more information on SpanKey, please visit RCDevs | SpanKey website.

The configuration of the OpenOTP client is very easy. You just have to run the following command in a shell:

 Note Debian 6

For Debian 6, you have to configure your WebADM/SpanKey Server(s) without SSL because it’s not supporting by the old version of

Debian. To do it, you can edit /etc/spankey/spankey.conf file. To work with SSL, you must download the source file of

pam_openotp and compile it directly on the client machine.

6. PAM OpenOTP Setup (Client Machine)

https://www.rcdevs.com/products/spankey/

Setup for PAM OpenOTP is now finished. During the setup, we can automatically configure PAM OpenOTP for OpenSSH but we will

show in the next section, the required configuration for OpenSSH.

For SSHd, you can keep the default configuration on each UNIX distribution. You just have to edit this file

/etc/ssh/sshd_config and adjust the following settings:

root@ubuntu18client:/home/ubuntu18-client# /usr/bin/openotp_setup
This is the configuration tool for RCDevs PAM module.
It will configure WebADM Server URL(s), SSH helper and NSS.

Enter WebADM server IP or hostname [localhost]: 192.168.3.131
Found one server URL: https://192.168.3.131:8443/openotp/
Retrieving WebADM CA certificate... Ok
Do you want PAM module to auto-create home directories ([y]/n)?:
y
Do you want to keep local password authentication as a fallback to OpenOTP? ([y]/n)?:
y
Do you want to activate PAM OpenOTP for ssh ([y]/n)?:
y
Do you want to activate PAM OpenOTP for graphical login with lightdm ([y]/n)?:
y

Auto-create home directories: Yes
Keep local password authentication as a fallback: Yes
Activate PAM OpenOTP for ssh: Yes

Do you confirm ([y]/n)?:
y

Updating /etc/openotp/openotp.conf... Ok
Updating /etc/ssh/sshd_config... Ok
Updating /etc/pam.d/sshd... OK
Synchronizing state of ssh.service with SysV service script with /lib/systemd/systemd-
sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable ssh
Synchronizing state of nscd.service with SysV service script with /lib/systemd/systemd-
sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable nscd

PAM OpenOTP has been succesfully configured.

 Note Debian 6

See Note in Chapter 4. SpanKey Client.

7. OpenSSH Server Configuration (Client Machine)

Restart OpenSSH server to apply the new configuration.

All of these scenarios used LDAP accounts. The option client_id in these different configuration files are used to point to a client

policy available in WebADM. If you need more information about client policy, please refer to Client Policy Guide. This setting is

not mandatory, so you can remove it if you don’t use it.

To configure UNIX services with OpenOTP authentication, you have to edit different files available in

/etc/pam.d/<service> .

The following example working for SSH:

ChallengeResponseAuthentication yes
UsePAM yes

 Note

These settings are already configured with the PAM_OpenOTP setup.

root@ubuntu18client:/home/ubuntu18-client# systemctl restart sshd

8. PAM Configuration for OpenOTP (Client Machine)

8.1 RedHat & CentOS 6⁄7 Distributions

Scenario 1: PAM OpenOTP for Services (SSH, FTP …)

bash-4.1# vi /etc/pam.d/sshd

 Note

These files should be already configured with the PAM_OpenOTP setup because we answered yes to configure OpenSSH server

during PAM_OpenOPT setup.

https://www.rcdevs.com/docs/howtos/client_policy/clientpolicy/

Configuration is done for OpenSSH. You are now able to log in through SSH tunnel with your LDAP credential and OTP password.

Test:

To configure the local login with OpenOTP (through VMWare interface for instance) you have to configure the file

/etc/pam.d/login .

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so client_id=
auth required pam_deny.so
account required pam_permit.so
session required pam_permit.so

account required pam_nologin.so
password include password-auth

session required pam_selinux.so close
session required pam_loginuid.so

session required pam_selinux.so open env_params
session required pam_namespace.so
session optional pam_keyinit.so force revoke
session include password-auth

"SSH"

pam_selinux.so close should be the first session rule

pam_selinux.so open should only be followed by sessions to be executed in the user
context

[yoann@iMac ~]$ ssh Administrateur@192.168.3.69
Password: xxxxxxx
Enter your TOKEN password: 043792
-bash-4.1$ whoami
Administrateur
-bash-4.1$

Scenario 2: PAM OpenOTP for the Local Login (Console Login or Through VMWare Interface)

bash-4.1# vi /etc/pam.d/login

Test:

In this part, we will configure sudo to use OpenOTP. Switching user using sudo requires the necessary authorizations. These

authorizations can be set by the root user and edited in /etc/sudoers . See UNIX documentation to edit it.

Here, we will edit /etc/pam.d/sudo to have a One-Time Password when users execute a sudo command.

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so client_id=
auth required pam_deny.so

account required pam_permit.so
session required pam_permit.so
account required pam_nologin.so
password include system-auth

session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so

session required pam_selinux.so open
session required pam_namespace.so
session optional pam_keyinit.so force revoke
session include system-auth
-session optional pam_ck_connector.so

#%PAM-1.0

"CONSOLE"

pam_selinux.so close should be the first session rule

pam_selinux.so open should only be followed by sessions to be executed in the user
context

Scenario 3: PAM OpenOTP for SUDO

bash-4.1# vi /etc/pam.d/sudo

So, as said before, user Administrateur must have permissions to execute sudo command.

Test:

To configure UNIX services with OpenOTP authentication, you have to edit the different file available in

/etc/pam.d/<service> .

The following example works for SSH:

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so client_id=
auth required pam_deny.so
account required pam_permit.so
session required pam_permit.so
password include system-auth
session optional pam_keyinit.so revoke
session required pam_limits.so

"sudo"

8.2 Debian 6⁄7 Distributions

Scenario 1 PAM OpenOTP for Services (SSH, FTP …)

bash-4.1# vi /etc/pam.d/sshd

Configuration is done for OpenSSH. You are now able to log in through SSH tunnel with your LDAP credential and OTP password.

auth required pam_env.so

auth required pam_env.so envfile=/etc/default/locale

auth sufficient pam_unix.so
auth sufficient pam_openotp.so client_id=
auth required pam_deny.so

account required pam_nologin.so

@include common-account

@include common-session

session optional pam_motd.so

session optional pam_mail.so standard noenv

session required pam_limits.so

@include common-password

PAM configuration for the Secure Shell service

Read environment variables from /etc/environment and
/etc/security/pam_env.conf.

[1]
In Debian 4.0 (etch), locale-related environment variables were moved to
/etc/default/locale, so read that as well.

Standard Un*x authentication.
#@include common-auth

"SSH"

Disallow non-root logins when /etc/nologin exists.

Uncomment and edit /etc/security/access.conf if you need to set complex
access limits that are hard to express in sshd_config.
account required pam_access.so

Standard Un*x authorization.

Standard Un*x session setup and teardown.

Print the message of the day upon successful login.
[1]

Print the status of the user's mailbox upon successful login.
[1]

Set up user limits from /etc/security/limits.conf.

Set up SELinux capabilities (need modified pam)
session required pam_selinux.so multiple

Standard Un*x password updating.

Scenario 2: PAM OpenOTP for the Local Login (Console or Through VMWare Interface)

bash-4.1# vi /etc/pam.d/login

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so client_id=
auth required pam_deny.so
auth optional pam_faildelay.so delay=3000000

auth [success=ok new_authtok_reqd=ok ignore=ignore user_unknown=bad default=die]
pam_securetty.so

auth requisite pam_nologin.so

#
The PAM configuration file for the Shadow `login' service
#

Enforce a minimal delay in case of failure (in microseconds).
(Replaces the `FAIL_DELAY' setting from login.defs)
Note that other modules may require another minimal delay. (for example,
to disable any delay, you should add the nodelay option to pam_unix)

"CONSOLE"

Outputs an issue file prior to each login prompt (Replaces the
ISSUE_FILE option from login.defs). Uncomment for use
auth required pam_issue.so issue=/etc/issue

Disallows root logins except on tty's listed in /etc/securetty
(Replaces the `CONSOLE' setting from login.defs)
#
With the default control of this module:
[success=ok new_authtok_reqd=ok ignore=ignore user_unknown=bad default=die]
root will not be prompted for a password on insecure lines.
if an invalid username is entered, a password is prompted (but login
will eventually be rejected)
#
You can change it to a "requisite" module if you think root may mis-type
her login and should not be prompted for a password in that case. But
this will leave the system as vulnerable to user enumeration attacks.
#
You can change it to a "required" module if you think it permits to
guess valid user names of your system (invalid user names are considered
as possibly being root on insecure lines), but root passwords may be
communicated over insecure lines.

Disallows other than root logins when /etc/nologin exists
(Replaces the `NOLOGINS_FILE' option from login.defs)

SELinux needs to be the first session rule. This ensures that any
lingering context has been cleared. Without out this it is possible
that a module could execute code in the wrong domain.
When the module is present, "required" would be sufficient (When SELinux
is disabled, this returns success.)

session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so
close

session required pam_env.so readenv=1

session required pam_env.so readenv=1 envfile=/etc/default/locale

@include common-auth

auth optional pam_group.so

session required pam_limits.so

session optional pam_lastlog.so

session optional pam_motd.so motd=/run/motd.dynamic
session optional pam_motd.so

This module parses environment configuration file(s)
and also allows you to use an extended config
file /etc/security/pam_env.conf.

parsing /etc/environment needs "readenv=1"

locale variables are also kept into /etc/default/locale in etch
reading this file *in addition to /etc/environment* does not hurt

Standard Un*x authentication.

This allows certain extra groups to be granted to a user
based on things like time of day, tty, service, and user.
Please edit /etc/security/group.conf to fit your needs
(Replaces the `CONSOLE_GROUPS' option in login.defs)

Uncomment and edit /etc/security/time.conf if you need to set
time restrainst on logins.
(Replaces the `PORTTIME_CHECKS_ENAB' option from login.defs
as well as /etc/porttime)
account requisite pam_time.so

Uncomment and edit /etc/security/access.conf if you need to
set access limits.
(Replaces /etc/login.access file)
account required pam_access.so

Sets up user limits according to /etc/security/limits.conf
(Replaces the use of /etc/limits in old login)

Prints the last login info upon succesful login
(Replaces the `LASTLOG_ENAB' option from login.defs)

Prints the message of the day upon succesful login.
(Replaces the `MOTD_FILE' option in login.defs)
This includes a dynamically generated part from /run/motd.dynamic
and a static (admin-editable) part from /etc/motd.

Prints the status of the user's mailbox upon succesful login
(Replaces the `MAIL_CHECK_ENAB' option from login.defs).
#
This also defines the MAIL environment variable
However, userdel also needs MAIL_DIR and MAIL_FILE variables

In this part, we will configure sudo to use OpenOTP. Switching user using sudo requires the necessary authorizations. These

authorizations can be set by the root user and edited in /etc/sudoers . See UNIX documentation to edit it.

Here, we will edit /etc/pam.d/sudo to prompt a One-Time Password when users execute a sudo command.

So, as said before, user Administrateur must have the permissions to execute sudo command.

Test:

session optional pam_mail.so standard

@include common-account
@include common-session
@include common-password

session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so
open

However, userdel also needs MAIL_DIR and MAIL_FILE variables
in /etc/login.defs to make sure that removing a user
also removes the user's mail spool file.
See comments in /etc/login.defs

Standard Un*x account and session

SELinux needs to intervene at login time to ensure that the process
starts in the proper default security context. Only sessions which are
intended to run in the user's context should be run after this.

When the module is present, "required" would be sufficient (When SELinux
is disabled, this returns success.)

Scenario 3: PAM OpenOTP for SUDO

bash-4.1# vi /etc/pam.d/sudo

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so client_id=
auth required pam_deny.so

@include common-account
@include common-session-noninteractive

#%PAM-1.0

"sudo"

#@include common-auth

#session required pam_permit.so
#session required pam_limits.so

On Debian 8, some configuration files are different from the previous version of Debian. See below, the configuration files for the

different scenario on Debian 8.

Here we’ll show how to configure the UNIX services with OpenOTP authentication.

To configure UNIX services with OpenOTP authentication, you have to edit the different files available in

/etc/pam.d/<service> .

The following example works for SSH:

8.3 Debian 8 and Later Distributions

Scenario 1: PAM OpenOTP for Services (SSH, FTP…)

admin:~ lo$ ssh user_spankey@192.168.3.130
Password:
Enter your TOKEN password: 282027
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-43-generic x86_64)
...
Last login: Fri Jan 4 14:44:06 2019 from 192.168.3.233
user_spankey@ubuntu18client:~$

root@ubuntu18client:/home/ubuntu18-client# vi /etc/pam.d/sshd

@include openotp-auth

account required pam_nologin.so

PAM configuration for the Secure Shell service

Standard Un*x authentication.

Disallow non-root logins when /etc/nologin exists.

Uncomment and edit /etc/security/access.conf if you need to set complex
access limits that are hard to express in sshd_config.
account required pam_access.so

@include common-account

session [success=ok ignore=ignore module_unknown=ignore default=bad]
pam_selinux.so close

session required pam_loginuid.so

session optional pam_keyinit.so force revoke

@include common-session

session optional pam_motd.so motd=/run/motd.dynamic
session optional pam_motd.so noupdate

session optional pam_mail.so standard noenv

session required pam_limits.so

session required pam_env.so

session required pam_env.so user_readenv=1 envfile=/etc/default/locale

session [success=ok ignore=ignore module_unknown=ignore default=bad]
pam_selinux.so open

@include common-password

account required pam_access.so

Standard Un*x authorization.

SELinux needs to be the first session rule. This ensures that any
lingering context has been cleared. Without this it is possible that a
module could execute code in the wrong domain.

Set the loginuid process attribute.

Create a new session keyring.

Standard Un*x session setup and teardown.

Print the message of the day upon successful login.
This includes a dynamically generated part from /run/motd.dynamic
and a static (admin-editable) part from /etc/motd.

Print the status of the user's mailbox upon successful login.
[1]

Set up user limits from /etc/security/limits.conf.

Read environment variables from /etc/environment and
/etc/security/pam_env.conf.

[1]
In Debian 4.0 (etch), locale-related environment variables were moved to
/etc/default/locale, so read that as well.

SELinux needs to intervene at login time to ensure that the process starts
in the proper default security context. Only sessions which are intended
to run in the user's context should be run after this.

Standard Un*x password updating.

root@ubuntu18client:/home/ubuntu18-client# vi /etc/pam.d/openotp-auth

Here we’ll show how to configure the local terminal login for example through the VMWare Interface with OpenOTP.

You have to configure the following file /etc/pam.d/login .

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so
auth required pam_deny.so

Scenario 2: PAM OpenOTP for the Local Login (Console or Through VMWare Interface)

root@ubuntu18client:/home/ubuntu18-client# vi /etc/pam.d/login

auth sufficient pam_openotp.so client_id=

#
The PAM configuration file for the Shadow `login' service
#

"CONSOLE"

auth optional pam_faildelay.so delay=3000000

auth [success=ok new_authtok_reqd=ok ignore=ignore user_unknown=bad default=die]
pam_securetty.so

auth requisite pam_nologin.so

session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so
close

session required pam_loginuid.so

session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so
open

Enforce a minimal delay in case of failure (in microseconds).
(Replaces the `FAIL_DELAY' setting from login.defs)
Note that other modules may require another minimal delay. (for example,
to disable any delay, you should add the nodelay option to pam_unix)

Outputs an issue file prior to each login prompt (Replaces the
ISSUE_FILE option from login.defs). Uncomment for use
auth required pam_issue.so issue=/etc/issue

Disallows root logins except on tty's listed in /etc/securetty
(Replaces the `CONSOLE' setting from login.defs)
#
With the default control of this module:
[success=ok new_authtok_reqd=ok ignore=ignore user_unknown=bad default=die]
root will not be prompted for a password on insecure lines.
if an invalid username is entered, a password is prompted (but login
will eventually be rejected)
#
You can change it to a "requisite" module if you think root may mis-type
her login and should not be prompted for a password in that case. But
this will leave the system as vulnerable to user enumeration attacks.
#
You can change it to a "required" module if you think it permits to
guess valid user names of your system (invalid user names are considered
as possibly being root on insecure lines), but root passwords may be
communicated over insecure lines.

Disallows other than root logins when /etc/nologin exists
(Replaces the `NOLOGINS_FILE' option from login.defs)

SELinux needs to be the first session rule. This ensures that any
lingering context has been cleared. Without this it is possible
that a module could execute code in the wrong domain.
When the module is present, "required" would be sufficient (When SELinux
is disabled, this returns success.)

Sets the loginuid process attribute

SELinux needs to intervene at login time to ensure that the process
starts in the proper default security context. Only sessions which are
intended to run in the user's context should be run after this.

When the module is present, "required" would be sufficient (When SELinux
is disabled, this returns success.)

session required pam_env.so readenv=1

@include common-auth

auth optional pam_group.so

session required pam_limits.so

session optional pam_lastlog.so

session optional pam_motd.so motd=/run/motd.dynamic
session optional pam_motd.so noupdate

session optional pam_mail.so standard

is disabled, this returns success.)

This module parses environment configuration file(s)
and also allows you to use an extended config
file /etc/security/pam_env.conf.

parsing /etc/environment needs "readenv=1"

Standard Un*x authentication.

This allows certain extra groups to be granted to a user
based on things like time of day, tty, service, and user.
Please edit /etc/security/group.conf to fit your needs
(Replaces the `CONSOLE_GROUPS' option in login.defs)

Uncomment and edit /etc/security/time.conf if you need to set
time restraint on logins.
(Replaces the `PORTTIME_CHECKS_ENAB' option from login.defs
as well as /etc/porttime)
account requisite pam_time.so

Uncomment and edit /etc/security/access.conf if you need to
set access limits.
(Replaces /etc/login.access file)
account required pam_access.so

Sets up user limits according to /etc/security/limits.conf
(Replaces the use of /etc/limits in old login)

Prints the last login info upon successful login
(Replaces the `LASTLOG_ENAB' option from login.defs)

Prints the message of the day upon successful login.
(Replaces the `MOTD_FILE' option in login.defs)
This includes a dynamically generated part from /run/motd.dynamic
and a static (admin-editable) part from /etc/motd.

Prints the status of the user's mailbox upon successful login
(Replaces the `MAIL_CHECK_ENAB' option from login.defs).
#
This also defines the MAIL environment variable
However, userdel also needs MAIL_DIR and MAIL_FILE variables
in /etc/login.defs to make sure that removing a user
also removes the user's mail spool file.
See comments in /etc/login.defs

In this part, we will configure sudo to use OpenOTP.

Switching the user to use sudo requires the necessary authorizations. These authorizations can be set by the root user by editing

the /etc/sudoers file. See UNIX documentation to edit it.

First, we’ll add the user (user_spankey) to /etc/sudoers with the following command:

Here, we will edit /etc/pam.d/sudo to prompt a One-Time Password when users execute a sudo command.

session optional pam_mail.so standard

session optional pam_keyinit.so force revoke

@include common-account
@include common-session
@include common-password

Create a new session keyring.

Standard Un*x account and session

Scenario 3: PAM OpenOTP for SUDO

user_spankey@ubuntu18client:~$ whoami
user_spankey
user_spankey@ubuntu18client:~$ sudo su
[sudo] password for user_spankey:
Enter your TOKEN password: 745487
root@ubuntu18client:/home/user_spankey# whoami
root

root@ubuntu18client:/home/ubuntu18-client# addgroup user_spankey sudo
Adding user `user_spankey' to group `sudo' ...
Adding user user_spankey to group sudo
Done.

root@ubuntu18client:/home/ubuntu18-client# vi /etc/pam.d/sudo

First, you have to determine which desktop environment you are running lightdm, Gnome desktop… In this documentation, we

will show you how to configure PAM OpenOTP login for these last 3 interfaces.

For Ubuntu, the default graphical interface is lightdm. To authorize the user to enter his own username, you have to edit the

following file:

And add the following line:

You can now reboot your machine and you will be able on the next login to enter your username manually.

Now, go in /etc/pam.d/ folder and look if the openotp-auth file is present. Normally it should be here after the

openotp_setup script.

After that, you can edit the file /etc/pam.d/lightdm and you should have something like below:

auth sufficient pam_openotp.so client_id=
session required pam_env.so readenv=1 user_readenv=0
session required pam_env.so readenv=1 envfile=/etc/default/locale user_readenv=0
@include common-auth
@include common-account
@include common-session-noninteractive

#%PAM-1.0

"sudo"

8.4 PAM OpenOTP for Login to the Desktop Environment

8.4.1 Ubuntu 16.04 LTS - lightdm

vi /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf

=greeter-show-manual-login true

This is the default file, we only change @include common-auth by @include openotp-auth on line 5.

Configuration is done, you are now able to log in to your desktop with an OTP.

auth requisite pam_nologin.so
auth sufficient pam_succeed_if.so user ingroup nopasswdlogin

@include openotp-auth
auth optional pam_gnome_keyring.so
auth optional pam_kwallet.so
auth optional pam_kwallet5.so
@include common-account
session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so
close
session required pam_loginuid.so
session required pam_limits.so
@include common-session
session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so
open
session optional pam_gnome_keyring.so auto_start
session optional pam_kwallet.so auto_start
session optional pam_kwallet5.so auto_start
session required pam_env.so readenv=1
session required pam_env.so readenv=1 user_readenv=1 envfile=/etc/default/locale
@include common-password

#%PAM-1.0

For GDM, the only file that you have to edit is: /etc/pam.d/gdm-password . This file should be like below:

8.4.2 Debian 9 - Gnome (GDM)

This is the default file, we only change @include common-auth by @include openotp-auth on line 4.

Configuration is done, you are now able to login on the Gnome desktop with an OTP:

auth requisite pam_nologin.so
auth required pam_succeed_if.so user != root quiet_success
@include openotp-auth
auth optional pam_gnome_keyring.so
@include common-account

session [success=ok ignore=ignore module_unknown=ignore default=bad]
pam_selinux.so close
session required pam_loginuid.so

session [success=ok ignore=ignore module_unknown=ignore default=bad]
pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_limits.so
session required pam_env.so readenv=1
session required pam_env.so readenv=1 envfile=/etc/default/locale
@include common-session
session optional pam_gnome_keyring.so auto_start
@include common-password

#%PAM-1.0

SELinux needs to be the first session rule. This ensures that any
lingering context has been cleared. Without this it is possible
that a module could execute code in the wrong domain.

SELinux needs to intervene at login time to ensure that the process
starts in the proper default security context. Only sessions which are
intended to run in the user's context should be run after this.

For GDM, the only file that you have to edit is: /etc/pam.d/gdm-password . This file should be like below:

8.4.3 CentOS 7 - Gnome (GDM)

auth [success= ignore=ignore default=bad] pam_selinux_permit.so
auth substack openotp-auth
@include openotp-auth
auth optional pam_gnome_keyring.so
auth include postlogin

account required pam_nologin.so
account include password-auth

password substack password-auth
-password optional pam_gnome_keyring.so use_authtok

session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
session required pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_namespace.so
session include password-auth
session optional pam_gnome_keyring.so auto_start
session include postlogin

done

This is the default file, we change it by disabling #auth substack openotp-auth and

#@include openotp-auth . Finally, adding the following:

Configuration is done, you are now able to login on the Gnome desktop with an OTP:

cat /etc/pam.d/openotp-auth
auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so
auth required pam_deny.so

auth [success= ignore=ignore default=bad] pam_selinux_permit.so

auth required pam_env.so
auth sufficient pam_unix.so
auth sufficient pam_openotp.so
auth required pam_deny.so

auth optional pam_gnome_keyring.so
auth include postlogin

account required pam_nologin.so
account include password-auth

password substack password-auth
-password optional pam_gnome_keyring.so use_authtok

session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
session required pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_namespace.so
session include password-auth
session optional pam_gnome_keyring.so auto_start
session include postlogin

done
#auth substack openotp-auth
#@include openotp-auth

There are many files that you can check to troubleshoot the Linux client and WebADM/OpenOTP/SpanKey servers.

WebADM/OpenOTP has a transaction log that records all requests/responses in the following file:

Typical logs of an authentication success using SSH and PAM_OpenOTP:

9. Troubleshooting

9.1 WebADM/OpenOTP/SpanKey Servers

bash-4.1# cat /opt/webadm/logs/webadm.log

[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] New openotpSimpleLogin SOAP
request
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Username: Administrateur
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Password: xxxxxxxx
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Client ID: SSH
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Source IP: 10.0.3.22
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Options: -U2F
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Enforcing client policy: SSH
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Registered openotpSimpleLogin
request
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Resolved LDAP user:
CN=Administrateur,CN=Users,DC=yorcdevs,DC=com
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Resolved LDAP groups:

Typical logs of an authentication failure caused by WebADM configuration. Challenge Mode Supported should be

configured to Yes either in OpenOTP Application settings or in the sudo Client Policy settings.

[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Resolved LDAP groups:
propri\xc3\xa9taires cr\xc3\xa9ateurs de la strat\xc3\xa9gie de groupe,admins du
domaine,administrateurs de l\xe2\x80\x99entreprise,administrateurs du
sch\xc3\xa9ma,administrateurs,utilisateurs du bureau \xc3\xa0 distance,groupe de
r\xc3\xa9plication dont le mot de passe rodc est refus\xc3\xa9
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Started transaction lock for
user
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Found user language: EN
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Found 3 user certificate
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Found 37 user settings:
LoginMode=LDAPMFA,OTPType=TOKEN,OTPLength=6,ChallengeMode=Yes,ChallengeTimeout=90,ChallengeLock=No,PushLogin=No,EnableLogin=Yes,AppKeyLength=20,HOTPLookAheadWindow=25,TOTPTimeStep=30,TOTPTimeOffsetWindow=120,MOTPTimeOffsetWindow=120,OCRASuite=OCRA-
1:HOTP-SHA1-6:QN06-
T1M,SMSType=Normal,SMSMode=Ondemand,MailMode=Ondemand,LastOTPTime=300,ListChallengeMode=ShowID

[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Found 12 user data:
LoginCount,RejectCount,LastOTP,ListInit,ListState,TokenType,TokenKey,TokenState,TokenID,Device1Name,Device1Data,Device1State

[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Found 1 registered OTP token
(TOTP)
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Requested login factors: LDAP
& OTP
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] LDAP password Ok
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Challenge required
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Started OTP challenge session
of ID PaS3WXe2HDJFz0st valid for 90 seconds
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Sent challenge response
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] New openotpChallenge SOAP
request
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Username: Administrateur
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > Session: PaS3WXe2HDJFz0st
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] > OTP Password: xxxxxx
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Enforcing client policy: SSH
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Registered openotpChallenge
request
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Found challenge session
started 2017-02-03 15:54:30
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Started transaction lock for
user
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] TOTP password Ok (token #1)
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Updated user data
[2017-02-03 15:54:30] [192.168.3.134] [OpenOTP:3MJAB3KR] Sent success response

To know if SpanKey client works properly, you can run the following command on your client:

This command must return Local and LDAP account (Extended to UNIX in WebADM).

[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] New openotpSimpleLogin SOAP
request
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] > Username: Administrateur
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] > Password: xxxxxxxx
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] > Client ID: sudo
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] > Source IP: 10.0.3.21
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] Options: -U2F
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] Enforcing client policy: sudo
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] Registered openotpSimpleLogin
request
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] Resolved LDAP user:
CN=Administrateur,CN=Users,DC=yorcdevs,DC=com
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] Resolved LDAP groups:
propri\xc3\xa9taires cr\xc3\xa9ateurs de la strat\xc3\xa9gie de groupe,admins du
domaine,administrateurs de l\xe2\x80\x99entreprise,administrateurs du
sch\xc3\xa9ma,administrateurs,utilisateurs du bureau \xc3\xa0 distance,groupe de
r\xc3\xa9plication dont le mot de passe rodc est refus\xc3\xa9
[2017-02-03 13:26:41] [192.168.3.60] [OpenOTP:7UERIOQE] Started transaction lock for
user
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Found user language: EN
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Found 3 user certificate
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Found 37 user settings:
LoginMode=LDAPMFA,OTPType=TOKEN,OTPLength=6,ChallengeMode=Yes,ChallengeTimeout=90,ChallengeLock=No,PushLogin=No,EnableLogin=Yes,AppKeyLength=20,HOTPLookAheadWindow=25,TOTPTimeStep=30,TOTPTimeOffsetWindow=120,MOTPTimeOffsetWindow=120,OCRASuite=OCRA-
1:HOTP-SHA1-6:QN06-
T1M,SMSType=Normal,SMSMode=Ondemand,MailMode=Ondemand,LastOTPTime=300,ListChallengeMode=ShowID

[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Found 12 user data:
LoginCount,RejectCount,LastOTP,ListInit,ListState,TokenType,TokenKey,TokenState,TokenID,Device1Name,Device1Data,Device1State

[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Challenge mode disabled
(assuming concatened passwords)
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Found 1 registered OTP token
(TOTP)
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Requested login factors: LDAP
& OTP
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] LDAP password Ok
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Updated user data
[2017-02-03 13:26:44] [192.168.3.60] [OpenOTP:7UERIOQE] Sent failure response

9.2 SpanKey Client

bash-4.1# getent passwd

You should see a UNIX extended LDAP account in the result of the getent passwd command:

If this command doesn’t return your LDAP Accounts, please check the firewall configuration and SpanKey’s configuration URLs in

/etc/spankey/spankey.conf. You can also try to restart the nscd service and check the SELinux configuration.

On Unix client, you can see the logs of the getent command in /var/log/messages :

If this log doesn’t appear when you call the getent command, SpanKey is not installed correctly. Try to reinstall it.

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
systemd-timesync:x:100:103:systemd Time Synchronization,,,:/run/systemd:/bin/false
systemd-network:x:101:104:systemd Network Management,,,:/run/systemd/netif:/bin/false
systemd-resolve:x:102:105:systemd Resolver,,,:/run/systemd/resolve:/bin/false
systemd-bus-proxy:x:103:106:systemd Bus Proxy,,,:/run/systemd:/bin/false
Debian-exim:x:104:109::/var/spool/exim4:/bin/false
messagebus:x:105:110::/var/run/dbus:/bin/false
statd:x:106:65534::/var/lib/nfs:/bin/false
sshd:x:107:65534::/var/run/sshd:/usr/sbin/nologin
test:x:1000:1000::/home/test:/bin/bash
Administrateur:x:1100:100::/home/administrateur:/bin/bash
yo:x:1101:100::/home/yo:/bin/sh

test:x:1000:1000:test::/home/test:/bin/bash
Administrateur:x:1100:100::/home/administrateur:/bin/bash
yo:x:1101:100::/home/yo:/bin/sh

Feb 3 15:33:40 debian8 spankey[2043]: RCDevs SpanKey NSS Plugin version 1.0.2-3 loaded

In WebADM logs, you can see the logs for the getent command too, getent call SpanKey module:

Typical logs of an authentication success:

For CentOS:

[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] New spankeyNSSList SOAP
request
[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] > Database: user
[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] > Client ID: SSH
[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] Enforcing client policy: SSH
[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] Registered spankeyNSSList
request
[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] Found 2 posix users
[2017-02-03 16:48:15] [192.168.3.134] [SpanKey:VOK85UQY] Sent success response

9.3 CentOS & Debian

bash-4.1# cat /var/log/secure

For Debian:

Feb 3 16:24:30 centos7 openotp[2132]: PAM Module for OpenOTP version 1.0.12 starting
Feb 3 16:24:30 centos7 openotp[2132]: Server URLs: https://192.168.3.55:8443/openotp/
Feb 3 16:24:30 centos7 openotp[2132]: Server Policy: Ordered
Feb 3 16:24:30 centos7 openotp[2132]: Domain name: [None]
Feb 3 16:24:30 centos7 openotp[2132]: Client id: SSH
Feb 3 16:24:30 centos7 openotp[2132]: Challenge suffix: :
Feb 3 16:24:30 centos7 openotp[2132]: User settings: [None]
Feb 3 16:24:30 centos7 openotp[2132]: Cert file: [None]
Feb 3 16:24:30 centos7 openotp[2132]: Cert password: [None]
Feb 3 16:24:30 centos7 openotp[2132]: CA file: [None]
Feb 3 16:24:30 centos7 openotp[2132]: SOAP timeout: [Default]
Feb 3 16:24:30 centos7 openotp[2132]: Create homedirs: No
Feb 3 16:24:30 centos7 openotp[2132]: Password mode: [Default]
Feb 3 16:24:30 centos7 openotp[2132]: Password separator: [None]
Feb 3 16:24:30 centos7 openotp[2132]: OTP length: [Default]
Feb 3 16:24:30 centos7 openotp[2132]: Got user name Administrateur
Feb 3 16:24:30 centos7 openotp[2132]: Got host name 10.0.3.28
Feb 3 16:24:30 centos7 openotp[2132]: Got anyPassword ******** for user Administrateur
Feb 3 16:24:30 centos7 openotp[2132]: Sending OpenOTP SimpleLogin request for user
Administrateur
Feb 3 16:24:31 centos7 openotp[2132]: Authentication challenge for user Administrateur
Feb 3 16:24:53 centos7 openotp[2132]: Got OTP password ****** for user Administrateur
Feb 3 16:24:53 centos7 openotp[2132]: Sending OpenOTP Challenge request for user
Administrateur
Feb 3 16:24:56 centos7 openotp[2132]: Authentication succeeded for user Administrateur

bash-4.1# cat /var/log/auth.log

In Linux, user and group information is often cached by NSCD (Name Service Cache Daemon), this can result in failed PAM-

OpenOTP login right after the installation or after creating a new user since the user is not available in the cache yet.

To resolve this issue, you can wait for the cache to be refreshed on its own, or start and stop the nscd process and to flush the

NSCD cache on your server.

The exact command and configuration depend on the Linux distribution in question. These commands are a sample for CentOS 7.

To stop and start NSCD:

To clear NSCD cache files:

Feb 3 15:54:30 debian8 openotp[2048]: PAM Module for OpenOTP version 1.0.12 starting
Feb 3 15:54:30 debian8 openotp[2048]: Server URLs: https://192.168.3.55:8443/openotp/
Feb 3 15:54:30 debian8 openotp[2048]: Server Policy: Ordered
Feb 3 15:54:30 debian8 openotp[2048]: Domain name: [None]
Feb 3 15:54:30 debian8 openotp[2048]: Client id: SSH
Feb 3 15:54:30 debian8 openotp[2048]: Challenge suffix: :
Feb 3 15:54:30 debian8 openotp[2048]: User settings: [None]
Feb 3 15:54:30 debian8 openotp[2048]: Cert file: [None]
Feb 3 15:54:30 debian8 openotp[2048]: Cert password: [None]
Feb 3 15:54:30 debian8 openotp[2048]: CA file: [None]
Feb 3 15:54:30 debian8 openotp[2048]: SOAP timeout: [Default]
Feb 3 15:54:30 debian8 openotp[2048]: Create homedirs: No
Feb 3 15:54:30 debian8 openotp[2048]: Password mode: [Default]
Feb 3 15:54:30 debian8 openotp[2048]: Password separator: [None]
Feb 3 15:54:30 debian8 openotp[2048]: OTP length: [Default]
Feb 3 15:54:30 debian8 openotp[2048]: Got user name Administrateur
Feb 3 15:54:30 debian8 openotp[2048]: Got host name 10.0.3.22
Feb 3 15:54:30 debian8 openotp[2048]: Got anyPassword ******** for user Administrateur
Feb 3 15:54:30 debian8 openotp[2048]: Sending OpenOTP SimpleLogin request for user
Administrateur
Feb 3 15:54:31 debian8 openotp[2048]: Authentication challenge for user Administrateur
Feb 3 15:54:53 debian8 openotp[2048]: Got OTP password ****** for user Administrateur
Feb 3 15:54:53 debian8 openotp[2048]: Sending OpenOTP Challenge request for user
Administrateur
Feb 3 15:54:56 debian8 openotp[2048]: Authentication succeeded for user Administrateur

9.4 Name Service Cache Daemon (NSCD)

systemctl stop nscd
systemctl start nscd

for k in /var/db/nscd/*; do nscd -i `basename $k`; done

 Play Video on Youtube

This manual was prepared with great care. However, RCDevs S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs S.A. does not enter into any responsibility in this respect. The hardware
and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs S.A. reserves all rights, especially for
translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-readable language
without the prior written permission of RCDevs S.A. The latter especially applies for data processing systems. RCDevs S.A. also reserves all communication rights (lectures, radio and
television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective manufacturers and as such are subject to the
statutory regulations. Product and brand names are the property of RCDevs S.A. © 2019 RCDevs SA, All Rights Reserved

10. Video Tutorial for OpenSSH

https://www.youtube.com/embed/hu0e16B4Bm8?start=1

	PAM OpenOTP Plugin LDAP PAM NSS SSH
	How To Install and Configure PAM OpenOTP Plugin to Enable Multifactor Authentication on Linux Machines
	Simple login flow
	Push Login flow

	1. Background
	2. Prerequisites
	3. WebADM Accounts Configuration
	4. SELinux Configuration (Client Machine)
	5. SpanKey Client Setup (Client Machine)
	6. PAM OpenOTP Setup (Client Machine)
	7. OpenSSH Server Configuration (Client Machine)
	8. PAM Configuration for OpenOTP (Client Machine)
	8.1 RedHat & CentOS 6⁄7 Distributions
	Scenario 1: PAM OpenOTP for Services (SSH, FTP …)
	Scenario 2: PAM OpenOTP for the Local Login (Console Login or Through VMWare Interface)
	Scenario 3: PAM OpenOTP for SUDO
	Scenario 1 PAM OpenOTP for Services (SSH, FTP …)

	8.2 Debian 6⁄7 Distributions
	Scenario 2: PAM OpenOTP for the Local Login (Console or Through VMWare Interface)
	Scenario 3: PAM OpenOTP for SUDO

	8.3 Debian 8 and Later Distributions
	Scenario 1: PAM OpenOTP for Services (SSH, FTP…)
	Scenario 2: PAM OpenOTP for the Local Login (Console or Through VMWare Interface)
	Scenario 3: PAM OpenOTP for SUDO

	8.4 PAM OpenOTP for Login to the Desktop Environment
	8.4.1 Ubuntu 16.04 LTS - lightdm
	8.4.2 Debian 9 - Gnome (GDM)
	8.4.3 CentOS 7 - Gnome (GDM)

	9. Troubleshooting
	9.1 WebADM/OpenOTP/SpanKey Servers
	9.2 SpanKey Client
	9.3 CentOS & Debian
	9.4 Name Service Cache Daemon (NSCD)

	10. Video Tutorial for OpenSSH

